
Pygame 1.5.5 Reference Manual

� 1

Pygame 1.5.5 Reference
Manual

Ver. 0.00
By Gabriel Alejandro Zorrilla

gaz082@yahoo.com.ar
Based entirely upon the Pygame Documentation

www.pygame.org

Pygame 1.5.5 Reference Manual

� 2

Some words from the “author”

Before you start to read this reference document, I would like to answer some questions that
perhaps came to your mind when you read the title of this book:

I have the Pygame Documents, why should I use this guide?
I found the Pygame Documents fine for a quick reference when you are used to the pygame
modules and stuff. Im a newbie pygame programmer and because of that I need constant assistance
from the Pygame Documents. But, it’s not funny to be opening and closing windows every time I
want to read it, so I decided to make a printer friendly version of those documents that suit my
tastes.

What are “your tastes”?
Through this document you will notice some reader friendly features:

- Real useful index: as reader of How to Think Like a Computer Scientist: Learning with Python
I´m sick of doing math everytime I have to type the page of the topic I want to go, because the 25
pages of introduction and stuff. With my book you just look what topic would you like to read
about and the index tells you exactly what page it is, whether you are reading this file in Acrobat or
printed. This may be not a mayor breakthrough in book desing development, but I´m sure that you
would thank this to me!.

- No “cut” paragraphs: aren´t you tired of reading one part of the paragraph in one page and the
other part in other one?, and then, when you type some code and want to pick up again that
paragraph, you have to look again and figure out in what page the important suff was?. That system
may save you paper, but, heck, this is a reference document, the purpose is to save time, not paper.

- PDF: pdf documents rule. You can read it in almost any machine and besides, pdf documents are
“in”.

Who are you?
My name is Gabriel Alejandro Zorrilla, and from now it mustn't be named again. I´m a 21 years old
fella from Buenos Aires, Argentina. I´m currently studying Industrial Engineering at the UTN. I
have many hobbies, and one of them is programming.

That´s it!. Enjoy this manual!.

Pygame 1.5.5 Reference Manual

� 3

Main Index

pygame...4
pygame.cdrom..6
pygame.constants ...7
pygame.display ..14
pygame.draw ..20
pygame.event ...22
pygame.font..26
pygame.image ..27
pygame.joystick ...29
pygame.key ..31
pygame.mixer...33
pygame.mixer.music ..37
pygame.mouse..40
pygame.movie ..42
pygame.sndarray ..43
pygame.surfarray..44
pygame.time...47
pygame.transform ..49
CD ..51
Channel ..54
Clock ..57
Font ..58
Joystick...61
Movie ...64
Rect ..67
Sound ...71
Sound ...73
Surface ...75
pygame.cursors ..83
pygame.sprite ...84

Pygame 1.5.5 Reference Manual

� 4

pygame
Contains the core routines that are used by the rest of the pygame modules. It's routines are merged
directly into the pygame namespace. This mainly includes the auto-initialization init() and quit()
routines.

There is a small module named 'locals' that also gets merged into this namespace. This contains all
the constants needed by pygame. Object constructors also get placed into this namespace, you can
call functions like Rect() and Surface() to create objects of that type. As a convenience, you can
import the members of pygame.locals directly into your module's namespace with 'from
pygame.locals import *'. Most of the pygame examples do this if you'd like to take a look.

Rect - create a new rectangle

Surface - create a new Surface

get_error - get current error message

init - autoinitialize all imported pygame modules

quit - uninitialize all pygame modules

register_quit - routine to call when pygame quits

Rect
pygame.Rect(rectstyle) -> Rect

Creates a new rectangle object. The given rectstyle represents one of the various ways of
representing rectangle data. This is usually a sequence of x and y position for the topleft corner,
and the width and height.

For some of the Rect methods there are two version. For example, there is move() and
move_ip(). The methods witht the '_ip' suffix on the name are the 'in-place' version of those
functions. They effect the actual source object, instead of returning a new Rect object.

Surface
pygame.Surface(size, [flags, [Surface|depth, [masks]]]) -> Surface

Creates a new surface object. Size is a 2-int-sequence containing width and height. Depth is the
number of bits used per pixel. If omitted, depth will use the current display depth. Masks is a
four item sequence containing the bitmask for r,g,b, and a. If omitted, masks will default to the
usual values for the given bitdepth. Flags is a mix of the following flags: SWSURFACE,
HWSURFACE, ASYNCBLIT, or SRCALPHA. (flags = 0 is the same as SWSURFACE).
Depth and masks can be substituted for another surface object which will create the new surface
with the same format as the given one. When using default masks, alpha will always be ignored
unless you pass SRCALPHA as a flag. For a plain software surface, 0 can be used for the flag.
A plain hardware surface can just use 1 for the flag.

get_error
pygame.get_error() -> errorstring

SDL maintains an internal current error message. This message is usually given to you when an
SDL related exception occurs, but sometimes you may want to call this directly yourself.

Pygame 1.5.5 Reference Manual

� 5

init
pygame.init() -> passed, failed

Initialize all imported pygame modules. Including pygame modules that are not part of the base
modules (like font and image).

It does not raise exceptions, but instead silently counts which modules have failed to init. The
return argument contains a count of the number of modules initialized, and the number of
modules that failed to initialize.

You can always initialize the modules you want by hand. The modules that need it have an init()
and quit() routine built in, which you can call directly. They also have a get_init() routine which
you can use to doublecheck the initialization. Note that the manual init() routines will raise an
exception on error. Be aware that most platforms require the display module to be initialized
before others. This init() will handle that for you, but if you initialize by hand, be aware of this
constraint.

As with the manual init() routines. It is safe to call this init() as often as you like. If you have
imported pygame modules since the.

quit
pygame.quit() -> none

Uninitialize all pygame modules that have been initialized. Even if you initialized the module
by hand, this quit() will uninitialize it for you.

All the pygame modules are uninitialized automatically when your program exits, so you will
usually not need this routine. If you program plans to keep running after it is done with pygame,
then would be a good time to make this call.

register_quit
pygame.register_quit(callback) -> None

The given callback routine will be called when. pygame is quitting. Quit callbacks are served on
a 'last in, first out' basis. Also be aware that your callback may be called more than once.

Pygame 1.5.5 Reference Manual

� 6

pygame.cdrom
The cdrom module provides a few functions to initialize the CDROM subsystem and to manage the
CD objects. The CD objects are created with the pygame.cdrom.CD() function. This function needs
a cdrom device number to work on. All cdrom drives on the system are enumerated for use as a CD
object. To access most of the CD functions, you'll need to init() the CD. (note that the cdrom
module will already be initialized). When multiple CD objects are created for the same CDROM
device, the state and values for those CD objects will be shared.

You can call the CD.get_name() and CD.get_id() functions without initializing the CD object.

Be sure to understand there is a difference between the cdrom module and the CD objects.

CD - create new CD object

get_count - query number of cdroms on system

get_init - query init of cdrom module

init - initialize the cdrom subsystem

quit - uninitialize the cdrom subsystem

CD
pygame.cdrom.CD(id) -> CD

Creates a new CD object for the given CDROM id. The given id must be less than the value
from pygame.cdrom.get_count().

get_count
pygame.cdrom.get_count() -> int

Returns the number of CDROM drives available on the system.

get_init
pygame.cdrom.get_init() -> bool

Returns true of the cdrom module is initialized

init
pygame.cdrom.init() -> None

Initialize the CDROM module manually

quit
pygame.cdrom.quit() -> None

Uninitialize the CDROM module manually

Pygame 1.5.5 Reference Manual

� 7

pygame.constants
These constants are defined by SDL, and needed in pygame. Note that many of the flags for SDL
are not needed in pygame, and are not included here. These constants are generally accessed from
the pygame.locals module. This module is automatically placed in the pygame namespace, but you
will usually want to place them directly into your module's namespace with the following
command, 'from pygame.locals import *'.

display - The following constants are used by the display module and Surfaces

events - These constants define the various event types

keyboard - These constants represent the keys on the keyboard.

modifiers - These constants represent the modifier keys on the keyboard.

zdepracated - The following constants are made available, but generally not needed

display
pygame.constants.display (constants)

HWSURFACE - surface in hardware video memory. (equal to 1)
RESIZABLE - display window is resizeable
ASYNCBLIT - surface blits happen asynchronously (threaded)
OPENGL - display surface will be controlled by opengl
HWPALETTE - display surface has animatable hardware palette entries
DOUBLEBUF - hardware display surface is page flippable
FULLSCREEN - display surface is fullscreen (nonwindowed)
RLEACCEL - compile for quick alpha blits, only set in alpha or colorkey funcs
NOFRAME - no window decorations

events
pygame.constants.events (constants)

NOEVENT - no event, represents an empty event list, equal to 0
ACTIVEEVENT - window has gain/lost mouse/keyboard/visiblity focus
KEYDOWN - keyboard button has been pressed (or down and repeating)
KEYUP - keyboard button has been released
MOUSEMOTION - mouse has moved
MOUSEBUTTONDOWN- mouse button has been pressed
MOUSEBUTTONUP - mouse button has been released
JOYAXISMOTION - an opened joystick axis has changed
JOYBALLMOTION - an opened joystick ball has moved
JOYHATMOTION - an opened joystick hat has moved
JOYBUTTONDOWN - an opened joystick button has been pressed
JOYBUTTONUP - an opened joystick button has been released
VIDEORESIZE - the display window has been resized by the user
QUIT - the user has requested the game to quit
SYSWMEVENT - currently unsupported, system dependant
USEREVENT - all user messages are this or higher
NUMEVENTS - all user messages must be lower than this, equal to 32

Pygame 1.5.5 Reference Manual

� 8

keyboard
pygame.constants.keyboard (constants)

There are many keyboard constants, they are used to represent keys on the keyboard. The
following is a list of all keyboard constants

KeyASCII ASCII Common Name

K_BACKSPACE \b backspace

K_TAB \t tab

K_CLEAR clear

K_RETURN \r return

K_PAUSE pause

K_ESCAPE ^[escape

K_SPACE space

K_EXCLAIM ! exclaim

K_QUOTEDBL \" quotedbl

K_HASH # hash

K_DOLLAR $ dollar

K_AMPERSAND & ampersand

K_QUOTE quote

K_LEFTPAREN (left parenthesis

K_RIGHTPAREN) right parenthesis

K_ASTERISK * asterisk

K_PLUS + plus sign

K_COMMA , comma

K_MINUS - minus sign

K_PERIOD . period

K_SLASH / forward slash

K_0 0 0

K_1 1 1

K_2 2 2

K_3 3 3

K_4 4 4

Pygame 1.5.5 Reference Manual

� 9

K_5 5 5

K_6 6 6

K_7 7 7

K_8 8 8

K_9 9 9

K_COLON : colon

K_SEMICOLON ; semicolon

K_LESS < less-than sign

K_EQUALS = equals sign

K_GREATER > greater-than sign

K_QUESTION ? question mark

K_AT @ at

K_LEFTBRACKET [left bracket

K_BACKSLASH \\ backslash

K_RIGHTBRACKET] right bracket

K_CARET ^ caret

K_UNDERSCORE _ underscore

K_BACKQUOTE ` grave

K_a a a

K_b b b

K_c c c

K_d d d

K_e e e

K_f f f

K_g g g

K_h h h

K_i i i

K_j j j

K_k k k

K_l l l

Pygame 1.5.5 Reference Manual

� 10

K_m m m

K_n n n

K_o o o

K_p p p

K_q q q

K_r r r

K_s s s

K_t t t

K_u u u

K_v v v

K_w w w

K_x x x

K_y y y

K_z z z

K_DELETE delete

K_KP0 keypad 0

K_KP1 keypad 1

K_KP2 keypad 2

K_KP3 keypad 3

K_KP4 keypad 4

K_KP5 keypad 5

K_KP6 keypad 6

K_KP7 keypad 7

K_KP8 keypad 8

K_KP9 keypad 9

K_KP_PERIOD . keypad period

K_KP_DIVIDE / keypad divide

K_KP_MULTIPLY * keypad multiply

K_KP_MINUS - keypad minus

K_KP_PLUS + keypad plus

Pygame 1.5.5 Reference Manual

� 11

K_KP_ENTER \r keypad enter

K_KP_EQUALS = keypad equals

K_UP up arrow

K_DOWN down arrow

K_RIGHT right arrow

K_LEFT left arrow

K_INSERT insert

K_HOME home

K_END end

K_PAGEUP page up

K_PAGEDOWN page down

K_F1 F1

K_F2 F2

K_F3 F3

K_F4 F4

K_F5 F5

K_F6 F6

K_F7 F7

K_F8 F8

K_F9 F9

K_F10 F10

K_F11 F11

K_F12 F12

K_F13 F13

K_F14 F14

K_F15 F15

K_NUMLOCK numlock

K_CAPSLOCK capslock

K_SCROLLOCK scrollock

K_RSHIFT right shift

Pygame 1.5.5 Reference Manual

� 12

K_LSHIFT left shift

K_RCTRL right ctrl

K_LCTRL left ctrl

K_RALT right alt

K_LALT left alt

K_RMETA right meta

K_LMETA left meta

K_LSUPER left windows key

K_RSUPER right windows key

K_MODE mode shift

K_HELP help

K_PRINT print-screen

K_SYSREQ SysRq

K_BREAK break

K_MENU menu

K_POWER power

K_EURO euro

modifiers
pygame.constants.modifiers (constants)

Their states are treated slightly differently than normal keyboard button states, and you can
temporarily set their states.

KMOD_NONE, KMOD_LSHIFT, KMOD_RSHIFT, KMOD_SHIFT, KMOD_CAPS,
KMOD_LCTRL, KMOD_RCTRL, KMOD_CTRL, KMOD_LALT, KMOD_RALT,
KMOD_ALT, KMOD_LMETA, KMOD_RMETA, KMOD_META, KMOD_NUM,
KMOD_MODE

Pygame 1.5.5 Reference Manual

� 13

zdepracated
pygame.constants.zdepracated (constants)

The flags labeled as readonly should never be used, except when comparing checking flags
against Surface.get_flags().

SWSURFACE - not really usable as a surface flag, equates to 0 and is always default
ANYFORMAT - creates a display with in best possible bit depth
HWACCEL - surface is hardware accelerated, readonly
SRCCOLORKEY- surface has a colorkey for blits, readonly
SRCALPHA - surface has alpha enabled, readonly
RLEACCELOK - surface is rle accelrated but uncompiled, readonly

Pygame 1.5.5 Reference Manual

� 14

pygame.display
Contains routines to work with the display. Mainly used for setting the display mode and updating
the display surface.

Pygame offers a fairly simple interface to the display buffer. The buffer is represented as an
offscreen surface to which you can write directly. If you want the screen to show what you have
written, the pygame.display.update() function will guarantee the the desired portion of the screen is
updated. You can call pygame.display.flip() to update the entire screen, and also flip a hardware
surface created with DOUBLEBUF.

There are a number of ways to start the video display. The easiest way is to pick a common screen
resolution and depth and just initialize the video, checking for exceptions. You will probably get
what you want, but pygame may be emulating your requested mode and converting the display on
update (this is not the fastest method). When calling pygame.display.set_mode() with the bit depth
omitted or set to zero, pygame will determine the best video mode available and set to that. You can
also query for more information on video modes with pygame.display.mode_ok(),
pygame.display.list_modes(), and pygame.display.Info().

When using a display depth other than what you graphic resources may be saved at, it is best to call
the Surface.convert() routine to convert them to the same format as the display, this will result in
the fastest blitting.

Pygame currently supports any but depth >= 8 bits per pixl. 8bpp formats are considered to be 8-bit
palettized modes, while 12, 15, 16, 24, and 32 bits per pixel are considered 'packed pixel' modes,
meaning each pixel contains the RGB color componsents packed into the bits of the pixel.

After you have initialized your video mode, you can take the surface that was returned and write to
it like any other Surface object. Be sure to call update() or flip() to keep what is on the screen
synchronized with what is on the surface. Be sure not to call display routines that modify the
display surface while it is locked.

Info - get display capabilities and settings

flip - update the display

get_active - get state of display mode

get_caption - get the current title of the window

get_driver - get the current sdl video driver

get_init - get status of display module initialization

get_surface - get current display surface

gl_get_attribute - get special OPENGL attributes

gl_set_attribute - set special OPENGL attributes

iconify - minimize the display window

init - initialize the display module

Pygame 1.5.5 Reference Manual

� 15

list_modes - query all resolutions for requested mode

mode_ok - query a specific display mode

quit - uninitialize the display module

set_caption - changes the title of the window

set_gamma - change the brightness of the display

set_gamma_ramp - advanced control over the display gamma ramps

set_icon - changes the window manager icon for the window

set_mode - set the display mode

set_palette - set the palette

toggle_fullscreen - switch the display fullscreen mode

update - update an area of the display

Info
pygame.display.Info() -> VidInfo

Gets a vidinfo object that contains information about the capabilities and current state of the
video driver. This can be called before the display mode is set, to determine the current video
mode of a display. You can print the VidInfo object to see all its members and values.

flip
pygame.display.flip() -> None

This will update the contents of the entire display. If your display mode is using the flags
HWSURFACE and DOUBLEBUF, this will wait for a vertical retrace and swap the surfaces. If
you are using a different type of display mode, it will simply update the entire contents of the
surface.

When using an OPENGL display mode this will perform a gl buffer swap.

get_active
pygame.display.get_active() -> bool

Returns true if the current display is active on the screen. This done with the call to
pygame.display.set_mode(). It is potentially subject to the activity of a running window
manager.

Calling set_mode() will change all existing display surface to reference the new display mode.
The old display surface will be lost after this call.

get_caption
pygame.display.get_caption() -> title, icontitle

Returns the current title and icontitle for the display window.

Pygame 1.5.5 Reference Manual

� 16

get_driver
pygame.display.get_driver() -> name

Once the display is initialized, this will return the name of the currently running video driver.
There is no way to get a list of all the supported video drivers.

get_init
pygame.display.get_init() -> bool

Returns true if SDL's video system is currently intialized.

get_surface
pygame.display.get_surface() -> Surface

Returns a Surface object representing the current display. Will return None if called before the
display mode is set.

gl_get_attribute
pygame.display.gl_get_attribute(flag) -> value

After calling pygame.display.set_mode() with the OPENGL flag you will likely want to check
the value of any special opengl attributes you requested. You will not always get what you
requested.

See pygame.display.gl_set_attribute() for a list of flags.

The OPENGL flags are; GL_ALPHA_SIZE, GL_DEPTH_SIZE, GL_STENCIL_SIZE,
GL_ACCUM_RED_SIZE, GL_ACCUM_GREEN_SIZE, GL_ACCUM_BLUE_SIZE,
GL_ACCUM_ALPHA_SIZE, GL_RED_SIZE, GL_GREEN_SIZE, GL_BLUE_SIZE,
GL_DEPTH_SIZE

gl_set_attribute
pygame.display.gl_set_attribute(flag, value) -> None

When calling pygame.display.set_mode() with the OPENGL flag, pygame automatically
handles setting the opengl attributes like color and doublebuffering. OPENGL offers several
other attributes you may want control over. Pass one of these attributes as the flag, and its
appropriate value.

This must be called before pygame.display.set_mode()

The OPENGL flags are; GL_ALPHA_SIZE, GL_DEPTH_SIZE, GL_STENCIL_SIZE,
GL_ACCUM_RED_SIZE, GL_ACCUM_GREEN_SIZE, GL_ACCUM_BLUE_SIZE,
GL_ACCUM_ALPHA_SIZE

iconify
pygame.display.iconify() -> bool

Tells the window manager (if available) to minimize the application. The call will return true if
successful. You will receive an APPACTIVE event on the event queue when the window has
been minimized.

Pygame 1.5.5 Reference Manual

� 17

init
pygame.display.init() -> None

Manually initialize SDL's video subsystem. Will raise an exception if it cannot be initialized. It
is safe to call this function if the video has is currently initialized.

list_modes
pygame.display.list_modes([depth, [flags]]) -> [[x,y],...] | -1

This function returns a list of possible dimensions for a specified color depth. The return value
will be an empty list if no display modes are available with the given arguments. A return value
of -1 means that any requested resolution should work (this is likely the case for windowed
modes). Mode sizes are sorted from biggest to smallest.

If depth is not passed or 0, SDL will choose the current/best color depth for the display. You
will usually want to pass FULLSCREEN when using the flags, if flags is omitted,
FULLSCREEN is the default.

mode_ok
pygame.display.mode_ok(size, [flags, [depth]]) -> int

This uses the same arguments as the call to pygame.display.set_mode(). It is used to determine
if a requested display mode is available. It will return 0 if the requested mode is not possible.
Otherwise it will return the best and closest matching bit depth for the mode requested.

The size is a 2-number-sequence containing the width and height of the desired display mode.
Flags represents a set of different options for the display mode. If omitted or given as 0, it will
default to a simple software window. You can mix several flags together with the bitwise-or (|)
operator. Possible flags are HWSURFACE (or the value 1), HWPALETTE, DOUBLEBUF,
and/or FULLSCREEN. There are other flags available but these are the most usual. A full list of
flags can be found in the SDL documentation. The optional depth arguement is the requested
bits per pixel. It will usually be left omitted, in which case the display will use the best/fastest
pixel depth available.

quit
pygame.display.quit() -> None

Manually uninitialize SDL's video subsystem. It is safe to call this if the video is currently not
initialized.

set_caption
pygame.display.set_caption(title, [icontitle]) -> None

If the display has a window title, this routine will change the name on the window. Some
environments support a shorter icon title to be used when the display is minimized. If icontitle is
omittied it will be the same as caption title.

Pygame 1.5.5 Reference Manual

� 18

set_gamma
pygame.display.set_gamma(r, [g, b]) -> bool

Sets the display gamma to the given amounts. If green and blue are ommitted, the red value will
be used for all three colors. The color arguments are floating point values with 1.0 being the
normal value. If you are using a display mode with a hardware palette, this will simply update
the palette you are using. Not all hardware supports gamma. The return value will be true on
success.

set_gamma_ramp
pygame.display.set_gamma_ramp(r, g, b) -> bool

Pass three sequences with 256 elements. Each element must be a '16bit' unsigned integer value.
This is from 0 to 65536. If you are using a display mode with a hardware palette, this will
simply update the palette you are using. Not all hardware supports gamma. The return value will
be true on success.

set_icon
pygame.display.set_icon(Surface) -> None

Sets the runtime icon that your system uses to decorate the program window. It is also used
when the application is iconified and in the window frame.

You likely want this to be a smaller image, a size that your system window manager will be able
to deal with. It will also use the Surface colorkey if available.

Some window managers on X11 don't allow you to change the icon after the window has been
shown the first time.

set_mode
pygame.display.set_mode(size, [flags, [depth]]) -> Surface

Sets the current display mode. If calling this after the mode has already been set, this will
change the display mode to the desired type. Sometimes an exact match for the requested video
mode is not available. In this case SDL will try to find the closest match and work with that
instead.

The size is a 2-number-sequence containing the width and height of the desired display mode.
Flags represents a set of different options for the new display mode. If omitted or given as 0, it
will default to a simple software window. You can mix several flags together with the bitwise-or
(|) operator. Possible flags are HWSURFACE (or the value 1), HWPALETTE, DOUBLEBUF,
and/or FULLSCREEN. There are other flags available but these are the most usual. A full list of
flags can be found in the pygame documentation.

The optional depth arguement is the requested bits per pixel. It will usually be left omitted, in
which case the display will use the best/fastest pixel depth available.

You can create an OpenGL surface (for use with PyOpenGL) by passing the OPENGL flag.
You will likely want to use the DOUBLEBUF flag when using OPENGL. In which case, the
flip() function will perform the GL buffer swaps. When you are using an OPENGL video mode,
you will not be able to perform most of the pygame drawing functions (fill, set_at, etc) on the
display surface.

Pygame 1.5.5 Reference Manual

� 19

set_palette
pygame.display.set_palette([[r, g, b], ...]) -> None

Displays with a HWPALETTE have two palettes. The display Surface palette and the visible
'onscreen' palette.

This will change the video display's visible colormap. It does not effect the display Surface's
base palette, only how it is displayed. Setting the palette for the display Surface will override
this visible palette. Also passing no args will reset the display palette back to the Surface's
palette.

You can pass an incomplete list of RGB values, and this will only change the first colors in the
palette.

toggle_fullscreen
pygame.display.toggle_fullscreen() -> bool

Tells the window manager (if available) to switch between windowed and fullscreen mode. If
available and successfull, will return true. Note, there is currently limited platform support for
this call.

update
pygame.display.update([rectstyle]) -> None

This call will update a section (or sections) of the display screen. You must update an area of
your display when you change its contents. If passed with no arguments, this will update the
entire display surface. If you have many rects that need updating, it is best to combine them into
a sequence and pass them all at once. This call will accept a sequence of rectstyle arguments.
Any None's in the list will be ignored.

This call cannot be used on OPENGL displays, and will generate an exception.

Pygame 1.5.5 Reference Manual

� 20

pygame.draw
Contains routines to draw onto a surface.

Note that all drawing routines use direct pixel access, so the surfaces must be locked for use. The
draw functions will temporarily lock the surface if needed, but if performing many drawing routines
together, it would be best to surround the drawing code with a lock/unlock pair.

circle - draw a circle on a surface

ellipse - draw an ellipse on a surface

line - draw a line on a surface

lines - draw multiple connected lines on a surface

polygon - draws a polygon on a surface

rect - draws a rectangle on a surface

circle
pygame.draw.circle(Surface, color, pos, radius, width=0) -> Rect

Draws a circular shape on the Surface. The given position is the center of the circle, and radius
is the size. The width argument is the thickness to draw the outer edge. If width is zero then the
circle will be filled.

The color argument can be either a RGB sequence or mapped color integer.

This function will temporarily lock the surface.

ellipse
pygame.draw.ellipse(Surface, color, Rect, width=0) -> Rect

Draws an elliptical shape on the Surface. The given rectangle is the area that the circle will fill.
The width argument is the thickness to draw the outer edge. If width is zero then the ellipse will
be filled.

The color argument can be either a RGB sequence or mapped color integer.

This function will temporarily lock the surface.

line
pygame.draw.line(Surface, color, startpos, endpos, width=1) -> Rect

Draws a line on a surface. This will respect the clipping rectangle. A bounding box of the
effected area is returned as a rectangle.

The color argument can be either a RGB sequence or mapped color integer.

This function will temporarily lock the surface.

Pygame 1.5.5 Reference Manual

� 21

lines
pygame.draw.lines(Surface, color, closed, point_array, width=1) -> Rect

Draws a sequence on a surface. You must pass at least two points in the sequence of points. The
closed argument is a simple boolean and if true, a line will be draw between the first and last
points. Note that specifying a linewidth wider than 1 does not fill in the gaps between the lines.
Therefore wide lines and sharp corners won't be joined seamlessly.

This will respect the clipping rectangle. A bounding box of the effected area is returned as a
rectangle.

The color argument can be either a RGB sequence or mapped color integer.

This function will temporarily lock the surface.

polygon
pygame.draw.polygon(Surface, color, pointslist, width=0) -> Rect

Draws a polygonal shape on the Surface. The given pointlist is the vertices of the polygon. The
width argument is the thickness to draw the outer edge. If width is zero then the polygon will be
filled.

The color argument can be either a RGB sequence or mapped color integer.

This function will temporarily lock the surface.

rect
pygame.draw.rect(Surface, color, Rect, width=0) -> Rect

Draws a rectangular shape on the Surface. The given Rect is the area of the rectangle. The width
argument is the thickness to draw the outer edge. If width is zero then the rectangle will be
filled.

The color argument can be either a RGB sequence or mapped color integer.

This function will temporarily lock the surface.

Keep in mind the Surface.fill() method works just as well for drawing filled rectangles. In fact
the Surface.fill() can be hardware accelerated when the moons are in alignement.

Pygame 1.5.5 Reference Manual

� 22

pygame.event
Pygame handles all it's event messaging through an event queue. The routines in this module help
you manage that event queue. The input queue is heavily dependent on the pygame display module.
If the display has not been initialized and a video mode not set, the event queue will not really
work.

The queue is a stack of Event objects, there are a variety of ways to access the data on the queue.
From simply checking for the existance of events, to grabbing them directly off the stack.

All events have a type identifier. This event type is in between the values of NOEVENT and
NUMEVENTS. All user defined events can have the value of USEREVENT or higher. It is
recommended make sure your event id's follow this system.

To get the state of various input devices, you can forego the event queue and access the input
devices directly with their appropriate modules; mouse, key, and joystick. If you use this method,
remember that pygame requires some form of communication with the system window manager
and other parts of the platform. To keep pygame in synch with the system, you will need to call
pygame.event.pump() to keep everything current. You'll want to call this function usually once per
game loop.

The event queue offers some simple filtering. This can help performance slightly by blocking
certain event types from the queue, use the pygame.event.set_allowed() and
pygame.event.set_blocked() to work with this filtering. All events default to allowed.

Also know that you will not receive any events from a joystick device, until you have initialized
that individual joystick from the joystick module.

An Event object contains an event type and a readonly set of member data. The Event object
contains no method functions, just member data. Event objects are retrieved from the pygame event
queue. You can create your own new events with the pygame.event.Event() function.

All Event objects contain an event type identifier in the Event.type member. You may also get full
access to the Event's member data through the Event.dict method. All other member lookups will be
passed through to the Event's dictionary values.

While debugging and experimenting, you can print the Event objects for a quick display of its type
and members. Events that come from the system will have a guaranteed set of member items based
on the type. Here is a list of the Event members that are defined with each type.

QUIT none

ACTIVEEVENT gain, state

KEYDOWN unicode, key, mod

KEYUP key, mod

MOUSEMOTION pos, rel, buttons

MOUSEBUTTONUP pos, button

MOUSEBUTTONDOWN pos, button

JOYAXISMOTION joy, axis, value

Pygame 1.5.5 Reference Manual

� 23

JOYBALLMOTION joy, ball, rel

JOYHATMOTION joy, hat, value

JOYBUTTONUP joy, button

JOYBUTTONDOWN joy, button

VIDEORESIZE size

VIDEOEXPOSE none

USEREVENT code

Event - create new event object

clear - remove all of an event type from the queue

event_name - name for event type

get - get all of an event type from the queue

get_blocked - checks if an event is being blocked

get_grab - query the state of input grabbing

peek - query if any of event types are waiting

poll - get an available event

post - place an event on the queue

pump - update the internal messages

set_allowed - allows certain events onto the queue

set_blocked - blocks certain events from the queue

set_grab - grab all input events

wait - wait for an event

Event
pygame.event.Event(type, [dict], [keyword_args]) -> Event

Creates a new event object. The type should be one of SDL's event numbers, or above
USEREVENT. The given dictionary contains the keys that will be members of the new event.

Also, instead of passing a dictionary to create the event members, you can pass keyword
arguments that will become the attributes of the new event.

Pygame 1.5.5 Reference Manual

� 24

clear
pygame.event.clear([type]) -> None

Pass this a type of event to discard, and it will remove all matching event types from the queue.
If no types are passed, this will remove all the events from the queue. You may also optionally
pass a sequence of event types. For example, to remove all the mouse motion events from the
queue, you would call, 'pygame.event.clear(MOUSEMOTION)'.

event_name
pygame.event.event_name(event type) -> string

Returns the standard SDL name for an event type. Mainly helpful for debugging, when trying to
determine what the type of an event is.

get
pygame.event.get([type]) -> list of Events

Pass this a type of event that you are interested in, and it will return a list of all matching event
types from the queue. If no types are passed, this will return all the events from the queue. You
may also optionally pass a sequence of event types. For example, to fetch all the keyboard
events from the queue, you would call, 'pygame.event.get([KEYDOWN,KEYUP])'.

get_blocked
pygame.event.get_blocked(type) -> boolean

This returns a true value if the given event type is being blocked from the queue. You can
optionally pass a sequence of event types, and it will return TRUE if any of the types are
blocked.

get_grab
pygame.event.get_grab() -> bool

Returns true if the input is currently grabbed to your application.

peek
pygame.event.peek([type]) -> bool

Pass this a type of event that you are interested in, and it will return true if there are any of that
type of event on the queue. If no types are passed, this will return the next event on the queue
without removing it. You may also optionally pass a sequence of event types. For example, to
find if any keyboard events are on the queue, you would call,
'pygame.event.peek([KEYDOWN,KEYUP])'.

poll
pygame.event.poll() -> Event

Returns next event on queue. If there is no event waiting on the queue, this will return an event
with type NOEVENT.

Pygame 1.5.5 Reference Manual

� 25

post
pygame.event.post(Event) -> None

This will post your own event objects onto the event queue. You can past any event type you
want, but some care must be taken. For example, if you post a MOUSEBUTTONDOWN event
to the queue, it is likely any code receiving the event will excpect the standard
MOUSEBUTTONDOWN attributes to be available, like 'pos' and 'button'.

pump
pygame.event.pump() -> None

For each frame of your game, you will need to make some sort of call to the event queue. This
ensures your program can internally interact with the rest of the operating system. If you are not
using other event functions in your game, you should call pump() to allow pygame to handle
internal actions.

There are important things that must be dealt with internally in the event queue. The main
window may need to be repainted. Certain joysticks must be polled for their values. If you fail
to make a call to the event queue for too long, the system may decide your program has locked
up.

set_allowed
pygame.event.set_allowed(type) -> None

By default, all events will appear from the queue. After you have blocked some event types, you
can use this to re-enable them. You can optionally pass a sequence of event types.

You can pass None and this will allow no events on the queue.

set_blocked
pygame.event.set_blocked(type) -> None

By default, all events will appear from the queue. This will allow you to prevent event types
from appearing on the queue. You can optionally pass a sequence of event types.

You can pass None and this will allow all events on the queue.

set_grab
pygame.event.set_grab(bool) -> None

Grabs all mouse and keyboard input for the display. Grabbing the input is not neccessary to
receive keyboard and mouse events, but it ensures all input will go to your application. It also
keeps the mouse locked inside your window. Set the grabbing on or off with the boolean
argument. It is best to not always grab the input, since it prevents the end user from doing
anything else on their system.

wait
pygame.event.wait() -> Event

Returns the current event on the queue. If there are no messages waiting on the queue, this will
not return until one is available. Sometimes it is important to use this wait to get events from the
queue, it will allow your application to idle when the user isn't doing anything with it.

Pygame 1.5.5 Reference Manual

� 26

pygame.font
The font module allows for rendering TrueType fonts into a new Surface object. This module is
optional and requires SDL_ttf as a dependency. You may want to check for pygame.font to import
and initialize before attempting to use the module.

Most of the work done with fonts are done by using the actual Font objects. The module by itself
only has routines to initialize the module and create Font objects with pygame.font.Font().

Font - create a new font object

get_default_font - get the name of the default font

get_init - get status of font module initialization

init - initialize the display module

quit - uninitialize the font module

Font
pygame.font.Font(file, size) -> Font

This will create a new font object. The given file must be a filename to a TTF file. The font
loader does not work with python file-like objects. The size represents the height of the font in
pixels. The file argument can be 'None', which will use a plain default font.

get_default_font
pygame.font.get_default_font() -> string

returns the name for the default truetype font.

get_init
pygame.font.get_init() -> bool

Returns true if the font module is currently intialized.

init
pygame.font.init() -> None

Manually initialize the font module. Will raise an exception if it cannot be initialized. It is safe
to call this function if font is currently initialized.

quit
pygame.font.quit() -> none

Manually uninitialize SDL's video subsystem. It is safe to call this if font is currently not
initialized.

Pygame 1.5.5 Reference Manual

� 27

pygame.image
This module contains functions to transfer images in and out of Surfaces. At the minimum the
included load() function will support BMP files. If SDL_image is properly installed when pygame
is installed, it will support all the formats included with SDL_image. You can call the
get_extended() function to test if the SDL_image support is available.

Some functions that communicate with other libraries will require that those libraries are properly
installed. For example, the save() function can only save OPENGL surfaces if pyopengl is
available.

fromstring - create a surface from a raw string buffer

get_extended - returns true if SDL_image formats are available

load - load an image to a new Surface

save - save surface data

tostring - create a raw string buffer of the surface data

fromstring
pygame.image.fromstring(string, size, format, flipped=0) -> Surface

This will create a new Surface from a copy of raw data in a string. This can be used to transfer
images from other libraries like PIL's fromstring().

The flipped argument should be set to true if the image in the string is.

The format argument is a string representing which type of string data you need. It can be one of
the following, \"P\" for 8bit palette indices. \"RGB\" for 24bit RGB data, \"RGBA\" for 32bit
RGB and alpha, or \"RGBX\" for 32bit padded RGB colors.

These flags are a subset of the formats supported the PIL Python Image Library. Note that the
\"P\" format only create an 8bit surface, but the colormap will be all black.

get_extended
pygame.image.get_extended() -> int

This will return a true value if the extended image formats from SDL_image are available for
loading.

Pygame 1.5.5 Reference Manual

� 28

load
pygame.image.load(file, [namehint]) -> Surface

This will load an image into a new surface. You can pass it either a filename, or a python file-
like object to load the image from. If you pass a file-like object that isn't actually a file (like the
StringIO class), then you might want to also pass either the filename or extension as the
namehint string. The namehint can help the loader determine the filetype.

If pygame was installed without SDL_image support, the load will only work with BMP
images. You can test if SDL_image is available with the get_extended() function. These
extended file formats usually include GIF, PNG, JPG, PCX, TGA, and more.

If the image format supports colorkeys and pixel alphas, the load() function will properly load
and configure these types of transparency.

save
pygame.image.save(Surface, file) -> None

This will save your surface as a BMP or TGA image. The given file argument can be either a
filename or a python file-like object. This will also work under OPENGL display modes.

The image will default to save with the TGA format. If the filename has the BMP extension, it
will use the BMP format.

tostring
pygame.image.tostring(Surface, format, flipped=0) -> string

This will copy the image data into a large string buffer. This can be used to transfer images to
other libraries like PIL's fromstring() and PyOpenGL's glTexImage2D().

The flipped argument will cause the output string to have it's contents flipped vertically.

The format argument is a string representing which type of string data you need. It can be one of
the following, \"P\" for 8bit palette indices. \"RGB\" for 24bit RGB data, \"RGBA\" for 32bit
RGB and alpha, or \"RGBX\" for 32bit padded RGB colors.

These flags are a subset of the formats supported the PIL Python Image Library. Note that the
\"P\" format only will work for 8bit Surfaces.

If you ask for the \"RGBA\" format and the image only has colorkey data. An alpha channel will
be created from the colorkey values.

Pygame 1.5.5 Reference Manual

� 29

pygame.joystick
The joystick module provides a few functions to initialize the joystick subsystem and to manage the
Joystick objects. These objects are created with the pygame.joystick.Joystick() function. This
function needs a joystick device number to work on. All joystick devices on the system are
enumerated for use as a Joystick object. To access most of the Joystick functions, you'll need to
init() the Joystick. (note that the joystick module will already be initialized). When multiple
Joysticks objects are created for the same joystick device, the state and values for those Joystick
objects will be shared.

You can call the Joystick.get_name() and Joystick.get_id() functions without initializing the
Joystick object.

Joystick control values are only updated during the calls to the event queue. Call
pygame.event.pump() if you are not using the event queue for any input handling. Once a joystick
object has been initialized, it will start to send joystick events to the input queue.

Be sure to understand there is a difference between the joystick module and the Joystick objects.

Joystick - create new joystick object

get_count - query number of joysticks on system

get_init - query initialization of joystick module

init - initialize joystick module

quit - uninitialize joystick module

Joystick
pygame.joystick.Joystick(id) -> Joystick

Creates a new joystick object for the given device id. The given id must be less than the value
from pygame.joystick.get_count().

get_count
pygame.joystick.get_count() -> int

Returns the number of joysticks devices available on the system.

get_init
pygame.joystick.get_init() -> bool

Returns true when the joystick module is initialized.

init
pygame.joystick.init() -> None

Initialize the joystick module manually

Pygame 1.5.5 Reference Manual

� 30

quit
pygame.joystick.quit() -> None

Uninitialize the joystick module manually

Pygame 1.5.5 Reference Manual

� 31

pygame.key
Contains routines for dealing with the keyboard. All keyboard events can be retreived through the
pygame.event module. With the key module, you can get the current state of the keyboard, as well
as set the rate of keyboard repeating and lookup names of keysyms.

get_focused - state of keyboard focus

get_mods - get current state of modifier keys

get_pressed - get the pressed state for all keys

name - get the name of a key

set_mods - set the state of the modifier keys

set_repeat - change the keyboard repeat

get_focused
pygame.key.get_focused() -> bool

Returns true when the application has the keyboard input focus.

get_mods
pygame.key.get_mods() -> int

Returns a bitwise combination of the pressed state for all modifier keys (KMOD_LSHIFT, etc).

get_pressed
pygame.key.get_pressed() -> tuple of bools

This gives you a big tuple with the pressed state for all keys. You index the sequence using the
keysym constant (K_SPACE, etc)

name
pygame.key.name(int) -> string

This will provide you with the keyboard name for a keysym. For example
'pygame.key.name(K_SPACE)' will return 'space'.

set_mods
pygame.key.set_mods(int) -> None

Allows you to control the internal state of the modifier keys. Pass an interger built from using
the bitwise-or (|) of all the modifier keys you want to be treated as pressed.

Pygame 1.5.5 Reference Manual

� 32

set_repeat
pygame.key.set_repeat([delay, interval]) -> None

When the keyboard repeat is enabled, you will receive multiple KEYDOWN events when the
user holds a key. You can control the repeat timing with the delay and interval values. If no
arguments are passed, keyboard repeat will be disabled.

Good values for delay and interval are 500 and 30.

Delay is the amount of milliseconds before the first repeated KEYDOWN event is received. The
interval is the amount of milliseconds for each repeated KEYDOWN event after that.

Pygame 1.5.5 Reference Manual

� 33

pygame.mixer
Contains sound mixer routines and objects. The mixer module is an optional pygame module,
dependent on the SDL_mixer library. This module contains the usual routines needed to initialize
the module. One difference is the pygame.mixer.init() function takes several optional arguments.
These arguments control the playback rates and datatypes for the sound playback. If you do need
specific control over the playback rate, but don't want to bother with hand-initializing the modules,
there is a function named pygame.mixer.pre_init() which takes the same arguments as init(), but
only sets the new default values. You can call this before pygame.init() and not have to worry about
the pygame module initialization order.

Sound objects are created from the pygame.mixer.Sound() function. Simple sound playback can
simply use the Sound.play() method to play the sound. Each Sound object can be played multiple
times simultaneously. If you desire more specific control over the Sound objects, you can access the
Channel objects with functions like pygame.mixer.Channel().

The mixer defaults to supporting 8 simultaneous soundfiles. You can change the number of
available sound channels at any time with the set_num_channels() function.

All loaded Sound objects are resampled to match the same format that pygame.mixer is initialized
to. The current SDL resampling functions are not that good, so it is best if you initialize
pygame.mixer to the same format as your sound resources. Also setting the mixer frequency to even
multiples of your sound resources will result in a cleaner conversion.

The mixer also contains a special channel for music. You can control the music channel through
pygame.mixer.music.

Channel - get channel object

Sound - load a new soundfile

fadeout - fadeout all channels

find_channel - find an available sound channel

get_busy - query busy channels

get_init - query initialization for the mixer

get_num_channels - query the number of channels

init - initialize mixer module

pause - pause all channels

pre_init - presets the init default values

quit - unitializes the mixer

set_num_channels - sets the number of available channels

set_reserved - reserves first given channels

stop - stop all channels

Pygame 1.5.5 Reference Manual

� 34

unpause - restart any pause channels

Channel
pygame.mixer.Channel(int) -> Channel

Get a channel object for the given channel. This number must be less that the current number of
channels.

Sound
pygame.mixer.Sound(file) -> Sound

Loads a new sound object from a WAV file. File can be a filename or a file-like object. The
sound will be converted to match the current mode of the mixer.

fadeout
pygame.mixer.fadeout(millisec) -> None

Fade out all the playing channels over the given number of milliseconds.

find_channel
pygame.mixer.find_channel([force]) -> Channel

Find a sound channel that is not busy. If the force argument is passed as a nonzero number, this
will return the channel of the longest running sound. If not forced, and there are no available
channels, returns None.

get_busy
pygame.mixer.get_busy() -> int

Returns the number of current active channels. This is not the total channels, but the number of
channels that are currently playing sound.

get_init
pygame.mixer.get_init() -> (frequency,format,stereo)

Returns a tuple containing the initialized state of the mixer module. If the module has not been
initialized, it will return None.

get_num_channels
pygame.mixer.get_num_channels() -> int

Gets the current number of channels available for the mixer. This value can be changed with
set_num_channels(). This value defaults to 8 when the mixer is first initialized.

Pygame 1.5.5 Reference Manual

� 35

init
pygame.mixer.init([freq, [size, [stereo, [buffersize]]]]) -> None

Initializes the mixer module. Usually no arguments will be needed, the defaults are 22050
frequency data in stereo with signed 16bit data. The size argument can be 8 or 16 for unsigned
data, or -8 or -16 for signed data. The default buffersize is 1024 samples, sometimes a larger
value is required.

On many platforms it is important that the display module is initialized before the audio. (that is,
if the display will be initialized at all). You can easily use the pygame.init() function to cleanly
initialize everything, but first use the pygame.mixer.pre_init() function to change the default
values for this init().

pause
pygame.mixer.pause() -> None

Temporarily stops playback on all the mixer channels.

pre_init
pygame.mixer.pre_init([freq, [size, [stereo, [buffersize]]]]) -> None

This routine is usefull when you want to customize the sound mixer playback modes. The
values you pass will change the default values used by pygame.mixer.init(). This way you can
still use the pygame automatic initialization to ensure everything happens in the right order, but
set the desired mixer mode.

quit
pygame.mixer.quit() -> None

This will stop all playing sounds and uninitialize the mixer module

set_num_channels
pygame.mixer.set_num_channels(int) -> None

Sets the current number of channels available for the mixer. This value defaults to 8 when the
mixer is first initialized. If the value is decreased, sounds playing in channels above the new
value will stop.

set_reserved
pygame.mixer.set_reserved(numchans) -> None

Reserves numchan channels. Reserved channels won't be used when a sound is played without
using a specific channel object. In otherwords, just calling Sound.play() will not use the
reserved channels. They must implicitly be used with Channel.play().

stop
pygame.mixer.stop() -> None

Stop the playback on all mixer channels.

Pygame 1.5.5 Reference Manual

� 36

unpause
pygame.mixer.unpause() -> None

Restarts playback of any paused channels.

Pygame 1.5.5 Reference Manual

� 37

pygame.mixer.music
The music module is tied closely to the pygame.mixer module. It is an optional module since it
depends on the SDL_mixer library. You should not manually import the music library. Instead it is
automatically included as a part of the mixer library. The default module path to music is
pygame.mixer.music.

The difference between playback of music and playback of sounds is that the music object is not
loaded and decoded all at once, instead the music data is streamed and decoded during playback.
There can only be one music file loaded at a single time. Loading a new music file will replace any
currently loaded music.

The music module has many of the same types of functions as the Sound objects. The main
difference is only one music object can be loaded at a time, with the load() function. Music must be
stored in an individual file on the system, it cannot be loaded from special file-like objects through
python.

fadeout - fadeout current music

get_busy - query state of the music

get_endevent - query the current music finished event

get_pos - query music position

get_volume - query music volume

load - load current music

pause - pause the playing music

play - play the current loaded music

queue - preload and queue a music file

rewind - restarts music

set_endevent - sets music finished event

set_volume - set music volume

stop - stop the playing music

unpause - restarts the paused music

fadeout
pygame.mixer.music.fadeout(millisec) -> None

Fades out the current playing music and stops it over the given milliseconds.

get_busy
pygame.mixer.music.get_busy() -> bool

Returns true if music is currently playing

Pygame 1.5.5 Reference Manual

� 38

get_endevent
pygame.mixer.music.get_endevent([eventid]) -> int

When the music has finished playing, you can optionally have pygame place a user defined
message on the event queue. If there is no callback event set, NOEVENT will be returned.
Otherwise it will return the id of the current music finishe event.

get_pos
pygame.mixer.music.get_pos() -> val

Get the current (interpolated) time position of the music. Value is in ms, just like get_ticks().

The returned time is only tracking the amount of music played. It will not reflect the result of
starting the music at an offset.

get_volume
pygame.mixer.music.get_volume() -> val

Get the current volume for the music. Value is between 0.0 and 1.0.

load
pygame.mixer.music.load(filename) -> None

Load a music object as the current music. The music only handles one music as the current. If
music is currently playing, it will be stopped and replaced with the given one. Loading music
only supports filenames, not file-like objects.

pause
pygame.mixer.music.pause() -> None

Temporarily stops the current music.

play
pygame.mixer.music.play(loops=0, startpos=0.0) -> None

Starts playing the current loaded music. This will restart the sound if it is playing. Loops
controls how many extra time the sound will play, a negative loop will play indefinitely, it
defaults to 0.

The starting position argument controls where in the music the song starts playing. The starting
position is dependent on the format of music playing. MP3 and OGG use the position as time (in
seconds). MOD music it is the pattern order number. Passing a startpos will raise a
NotImplementedError if it cannot set the start position (or your version of SDL_mixer is too
old)

queue
pygame.mixer.music.queue(soundfile) -> None

This will load a music file and queue it. A queued music file will begin as soon as the current
music naturally ends. If the current music is ever stopped or changed, the queued song will be
lost.

Pygame 1.5.5 Reference Manual

� 39

rewind
pygame.mixer.music.rewind() -> None

Restarts playback of the current music.

set_endevent
pygame.mixer.music.set_endevent([eventid]) -> None

When the music has finished playing, you can optionally have pygame place a user defined
message on the event queue. If the eventid field is omittied or NOEVENT, no messages will be
sent when the music finishes playing. Once the endevent is set, it will be called every time the
music finished playing.

set_volume
pygame.mixer.music.set_volume(val) -> None

Sets the current volume for the music. Value is between 0.0 and 1.0.

stop
pygame.mixer.music.stop() -> None

Stops playback of the current music.

unpause
pygame.mixer.music.unpause() -> None

Restarts playback of the current music object when paused.

Pygame 1.5.5 Reference Manual

� 40

pygame.mouse
Contains routines for dealing with the mouse. All mouse events are retrieved through the
pygame.event module. The mouse module can be used to get the current state of the mouse. It can
also be used to set the state of the system cursor.

If you hide the mouse cursor with pygame.mouse.set_visible(0) and lock the mouse focus to your
game with pygame.event.set_grab(1), the hidden mouse will be forced to the center of the screen.
This will help your relative mouse motions keep from getting stuck on the edges of the screen.

get_cursor - get mouse cursor data

get_focused - state of mouse input focus

get_pos - gets the cursor position

get_pressed - state of the mouse buttons

get_rel - gets the movement of the mouse

set_cursor - state of shape of the mouse cursor

set_pos - moves the cursor position

set_visible - show or hide the mouse cursor

get_cursor
pygame.mouse.get_cursor() -> size, hotspot, xormasks, andmasks

The mouse cursor data is the same as those passed into set_cursor.

get_focused
pygame.mouse.get_focused() -> bool

Returns true when the application is receiving the mouse input focus.

get_pos
pygame.mouse.get_pos() -> x, y

Returns the current position of the mouse cursor. This is the absolute mouse position inside your
game window.

get_pressed
pygame.mouse.get_pressed() -> button1, button2, button3

This will return a small sequence containing the pressed state of each mouse button.

Pygame 1.5.5 Reference Manual

� 41

get_rel
pygame.mouse.get_rel() -> x, y

Returns the total distance the mouse has moved since your last call to get_rel(). On the first call
to get_rel the movement will always be 0,0.

When the mouse is at the edges of the screen, the relative movement will be stopped. See
mouse_visible for a way to resolve this.

set_cursor
pygame.mouse.set_cursor(size, hotspot, xormasks, andmasks) -> None

When the mouse cursor is visible, it will be displayed as a black and white bitmap using the
given bitmask arrays. The size is a sequence containing the cursor width and height. Hotspot is a
sequence containing the cursor hotspot position. xormasks is a sequence of bytes containing the
cursor xor data masks. Lastly is andmasks, a sequence of bytes containting the cursor bitmask
data.

Width must be a multiple of 8, and the mask arrays must be the correct size for the given width
and height. Otherwise an exception.

set_pos
pygame.mouse.set_pos(pos) -> None

Moves the mouse cursor to the specified position. This will generate a MOUSEMOTION event
on the input queue. The pos argument is a 2-number-sequence containing the desired x and y
position.

set_visible
pygame.mouse.set_visible(bool) -> bool

Shows or hides the mouse cursor. This will return the previous visible state of the mouse cursor.

Note that when the cursor is hidden and the application has grabbed the input. pygame will
force the mouse to stay in the center of the screen. Since the mouse is hidden it won't matter that
it's not moving, but it will keep the mouse from the edges of the screen so the relative mouse
position will always be true.

Pygame 1.5.5 Reference Manual

� 42

pygame.movie
The movie module is an optional pygame module that allows for decoding and playback of MPEG
movie files. The module only contains a single function, Movie() which creates a new Movie
object.

Movies are played back in background threads, so there is very little management needed on the
user end. Just load the Movie, set the destination, and Movie.play()

Movies will only playback audio if the pygame.mixer module is not initialized. It is easy to
temporarily call pygame.mixer.quit() to disable audio, then create and play your movie. Finally
calling pygame.mixer.init() again when finished with the Movie.

Movie - load a new MPEG stream

Movie
pygame.movie.Movie(file) -> Movie

Loads a new movie stream from a MPEG file. The file argument is either a filename, or any
python file-like object.

Pygame 1.5.5 Reference Manual

� 43

pygame.sndarray
Contains routines for mixing numeric arrays with sounds

array - get an array copied from a sound

make_sound - create a new Sound object from array data

samples - get a reference to the sound samples

array
pygame.sndarray.array(Sound) -> Array

Creates an array with a copy of the sound data.

make_sound
pygame.sndarray.make_sound(array) -> Sound

Create a new playable Sound object from array data the Sound will be a copy of the array
samples.

The array must be 1-dimensional for mono sound, and. 2-dimensional for stereo.

samples
pygame.sndarray.samples(Surface) -> Array

This will return an array that directly references the samples in the array.

Pygame 1.5.5 Reference Manual

� 44

pygame.surfarray
Contains routines for mixing numeric arrays with surfaces

array2d - get a 2d array copied from a surface

array3d - get a 3d array copied from a surface

array_alpha - get an array with a surface pixel alpha values

array_colorkey - get an array with a surface colorkey values

blit_array - quickly transfer an array to a Surface

make_surface - create a new Surface from array data

map_array - map an array with RGB values into mapped colors

pixels2d - get a 2d reference array to a surface

pixels3d - get a 3d reference array to a surface

pixels_alpha - get a reference array to a surface alpha data

array2d
pygame.surfarray.array2d(Surface) -> Array

This returns a new contigous 2d array. Think of it as a 2d image array with a mapped pixel
value at each index.

This function will temporarily lock the surface.

array3d
pygame.surfarray.array3d(Surface) -> Array

This returns a new contigous 3d array. Think of it as a 2d image array with an RGB array for
each pixel value.

This function will temporarily lock the surface.

array_alpha
pygame.surfarray.array_alpha(Surface) -> Array

This returns a new contigous 2d array with the alpha values of an image as unsigned bytes. If
the surface has no alpha, an array of all opaque values is returned.

This function will temporarily lock the surface.

Pygame 1.5.5 Reference Manual

� 45

array_colorkey
pygame.surfarray.array_colorkey(Surface) -> Array

This returns a new contigous 2d array with the colorkey values of an image as unsigned bytes. If
the surface has no colorkey, an array of all opaque values is returned. Otherwise the array is
either 0's or 255's.

This function will temporarily lock the surface.

blit_array
pygame.surfarray.blit_array(surf, array) -> None

Transfer an array of any type (3d or 2d) onto a Surface. The array must be the same dimensions
as the destination Surface. While you can assign the values of an array to the pixel referenced
arrays, using this blit method will usually be quicker because of it's smarter handling of
noncontiguous arrays. Plus it allows you to blit from any image array type to any surface format
in one step, no internal conversions.

This function will temporarily lock the surface.

make_surface
pygame.surfarray.make_surface(array) -> Surface

Create a new software surface that closely resembles the data and format of the image array
data.

map_array
pygame.surfarray.map_array(surf, array3d) -> array2d

Create a new array with the RGB pixel values of a 3d array into mapped color values in a 2D
array.

Just so you know, this can also map a 2D array with RGB values into a 1D array of mapped
color values

pixels2d
pygame.surfarray.pixels2d(Surface) -> Array

This returns a new noncontigous 2d array that directly effects a Surface's contents. Think of it as
a 2d image array with a mapped pixel value at each index.

This will not work on 24bit surfaces, since there is no native 24bit data type to access the pixel
values.

This function will lock the given surface, and it will remained locked for as long as the pixel
array exists

pixels3d
pygame.surfarray.pixels3d(Surface) -> Array

This returns a new noncontigous 3d array that directly effects a Surface's contents. Think of it as
a 2d image array with an RGB array for each pixel value.

Pygame 1.5.5 Reference Manual

� 46

This will only work for 24 and 32 bit surfaces, where the RGB components can be accessed as
8-bit components.

This function will lock the given surface, and it will remained locked for as long as the pixel
array exists

pixels_alpha
pygame.surfarray.pixels_alpha(Surface) -> Array

This returns a new noncontigous array that directly effects a Surface's alpha contents.

This will only work for 32bit surfaces with a pixel alpha channel enabled.

This function will lock the given surface, and it will remained locked for as long as the pixel
array exists

Pygame 1.5.5 Reference Manual

� 47

pygame.time
Contains routines to help keep track of time. The timer resolution on most systems is around 10ms.

All times are represented in milliseconds, which is simply Seconds*1000. (therefore 2500
milliseconds is 2.5 seconds)

You can also create Clock instances to keep track of framerate.

Clock - create a new clock

delay - accurately delay for a number of milliseconds

get_ticks - milliseconds since initialization

set_timer - control timer events

wait - yielding delay for a number of milliseconds

Clock
pygame.time.Clock() -> Clock

Clocks are used to track and control the framerate of a game. You create the objects with the
time.Clock() function. The clock can be used to limit the framerate of a game, as well as track
the time used per frame.

delay
pygame.time.delay(millseconds) -> time

Will pause for a given number of milliseconds. This function will use the CPU in order to make
the delay more accurate than wait().

This returns the actual number of milliseconds used.

get_ticks
pygame.time.get_ticks() -> int

This is the time in milliseconds since the pygame.time was imported. Always returns 0 before
pygame.init() is called.

set_timer
pygame.time.set_timer(eventid, milliseconds) -> int

Every event id can have a timer attached to it. Calling this will set the timer in milliseconds for
that event. setting milliseconds to 0 or less will disable that timer. When a timer for an event is
set, that event will be placed on the event queue every given number of milliseconds.

Pygame 1.5.5 Reference Manual

� 48

wait
pygame.time.wait(millseconds) -> time

Will pause for a given number of milliseconds. This function sleeps the process to better share
the CPU with other processes. It is less accurate than the delay() function.

This returns the actual number of milliseconds used.

Pygame 1.5.5 Reference Manual

� 49

pygame.transform
Contains routines to transform a Surface image.

All transformation functions take a source Surface and return a new copy of that surface in the same
format as the original.

Some of the filters are 'destructive', which means if you transform the image one way, you can't
transform the image back to the exact same way as it was before. If you plan on doing many
transforms, it is good practice to keep the original untransformed image, and only translate that
image.

flip - flips a surface on either axis

rotate - rotate a Surface

rotozoom - smoothly scale and/or rotate an image

scale - scale a Surface to an arbitrary size

scale2x - doubles the size of the image with advanced scaling

flip
pygame.transform.flip(Surface, xaxis, yaxis) -> Surface

Flips the image on the x-axis or the y-axis if the argument for that axis is true.

The flip operation is nondestructive, you may flip the image as many times as you like, and
always be able to recreate the exact original image.

rotate
pygame.transform.rotate(Surface, angle) -> Surface

Rotates the image counterclockwise with the given angle (in degrees). The angle can be any
floating point value (negative rotation amounts will do clockwise rotations)

Unless rotating by 90 degree increments, the resulting image size will be larger than the
original. There will be newly uncovered areas in the image. These will filled with either the
current colorkey for the Surface, or the topleft pixel value. (with the alpha channel zeroed out if
available)

This transformation is not filtered.

Pygame 1.5.5 Reference Manual

� 50

rotozoom
pygame.transform.rotozoom(Surface, angle, zoom) -> Surface

The angle argument is the number of degrees to rotate counter-clockwise. The angle can be any
floating point value. (negative rotation amounts will do clockwise rotations)

This will smoothly rotate and scale an image in one pass. The resulting image will always be a
32bit version of the original surface. The scale is a multiplier for the image size, and angle is the
degrees to rotate counter clockwise.
It calls the SDL_rotozoom library which is compiled in. Note that the code in SDL_rotozoom is
fairly messy and your resulting image could be shifted and contain artifacts.

scale
pygame.transform.scale(Surface, size) -> Surface

This will resize a surface to the given resolution. The size is simply any 2 number sequence
representing the width and height.

This transformation is not filtered.

scale2x
pygame.transform.scale2x(Surface) -> Surface

This will return a new image that is double the size of the original. It uses the AdvanceMAME
Scale2X algorithm which does a 'jaggie-less' scale of bitmap graphics.

This really only has an effect on simple images with solid colors. On photographic and
antialiased images it will look like a regular unfiltered scale.

Pygame 1.5.5 Reference Manual

� 51

CD
The CD object represents a CDROM drive and allows you to access the CD inside that drive. All
functions (except get_name() and get_id()) require the CD object to be initialized. This is done with
the CD.init() function.

Be sure to understand there is a difference between the cdrom module and the CD objects.

eject - ejects cdrom drive

get_all - get all track information for the cd

get_busy - checks if the cd is currently playing

get_current - get current position of the cdrom

get_empty - checks for a cd in the drive

get_id - get device id number for drive

get_init - check if cd is initialized

get_name - query name of cdrom drive

get_numtracks - get number of tracks on cd

get_paused - checks if the cd is currently paused

get_track_audio - check if a track has audio data

get_track_length - check the length of an audio track

get_track_start - check the start of an audio track

init - initialize a cdrom device for use

pause - pause playing cdrom

play - play music from cdrom

quit - uninitialize a cdrom device for use

resume - resume paused cdrom

stop - stops playing cdrom

eject
CD.eject() -> None

Ejects the media from the CDROM drive. If the drive is empty, this will open the CDROM
drive.

Pygame 1.5.5 Reference Manual

� 52

get_all
CD.get_all() -> tuple

Returns a tuple with values for each track on the CD. Each item in the tuple is a tuple with 4
values for each track. First is a boolean set to true if this is an audio track. The next 3 values are
the start time, end time, and length of the track.

get_busy
CD.get_busy() -> bool

Returns a true value if the cd drive is currently playing. If the drive is paused, this will return
false.

get_current
CD.get_current() -> track, seconds

Returns the current track on the cdrom and the number of seconds into that track.

get_empty
CD.get_empty() -> bool

Returns a true value if the cd drive is empty.

get_id
CD.get_id() -> idnum

Returns the device id number for this cdrom drive. This is the same number used in the call to
pygame.cdrom.CD() to create this cd device. The CD object does not need to be initialized for
this function to work.

get_init
CD.get_init() -> bool

Returns a true value if the CD is initialized.

get_name
CD.get_name(id) -> string

Returns the name of the CDROM device, given by the system. This function can be called
before the drive is initialized.

get_numtracks
CD.get_numtracks() -> numtracks

Returns the number of available tracks on the CD. Note that not all of these tracks contain audio
data. Use CD.get_track_audio() to check the track type before playing.

get_paused
CD.get_paused() -> bool

Returns a true value if the cd drive is currently paused.

Pygame 1.5.5 Reference Manual

� 53

get_track_audio
CD.get_track_audio(track) -> bool

Returns true if the cdrom track contains audio data.

get_track_length
CD.get_track_length(track) -> seconds

Returns the number of seconds in an audio track. If the track does not contain audio data,
returns 0.0.

get_track_start
CD.get_track_start(track) -> seconds

Returns the number of seconds an audio track starts on the cd.

init
CD.init() -> None

In order to call most members in the CD object, the CD must be initialized. You can initialzie
the CD object at anytime, and it is ok to initialize more than once.

pause
CD.pause() -> None

Pauses the playing CD. If the CD is not playing, this will do nothing.

play
CD.play(track, [start, end]) -> None

Play an audio track on a cdrom disk. You may also optionally pass a starting and ending time to
play of the song. If you pass the start and end time in seconds, only that portion of the audio
track will be played. If you only provide a start time and no end time, this will play to the end of
the track. You can also pass 'None' as the ending time, and it will play to the end of the cd.

quit
CD.quit() -> None

After you are completely finished with a cdrom device, you can use this quit() function to free
access to the drive. This will be cleaned up automatically when the cdrom module is.
uninitialized. It is safe to call this function on an uninitialized CD.

resume
CD.resume() -> int

Resumes playback of a paused CD. If the CD has not been pause, this will do nothing.

stop
CD.stop() -> int

Stops the playing CD. If the CD is not playing, this will do nothing.

Pygame 1.5.5 Reference Manual

� 54

Channel
Channel objects represent a single channel of sound. Each channel can only playback one Sound
object at a time. If your application only requires simply sound playback, you will usually not need
to bother with the Channel objects, they exist for finer playback control.

Sound objects can be retrieved from the pygame.mixer module with functions like
pygame.mixer.Channel() and pygame.mixer.find_channel(). Also, each time you call Sound.play() a
Channel object will be returned, representing the channel that sound is playing on.

fadeout - fade out the channel

get_busy - query state of the channel

get_endevent - get the endevent for a channel

get_queue - get the currently queued sound object

get_sound - get the currently playing sound object

get_volume - query the volume for the

pause - temporarily stop the channel

play - play a sound on this channel

queue - queue a sound on this channel

set_endevent - set an endevent for a channel

set_volume - set volume for channel

stop - stop playing on the channel

unpause - restart a paused channel

fadeout
Channel.fadeout(millisec) -> None

Fade out the playing sound and stops it over the given milliseconds.

get_busy
Channel.get_busy() -> bool

Returns true when there is a sound actively playing on this channel.

get_endevent
Channel.get_endevent() -> event_type

Returns the end event type for this Channel. If the return value is NOEVENT, then no events
will be sent when playback ends.

Pygame 1.5.5 Reference Manual

� 55

get_queue
Channel.get_queue() -> Sound

Return the currently queued Sound object on this channel. This will return None if there is
nothing queued.

get_sound
Channel.get_sound() -> Sound

Return the currently playing Sound object on this channel. This will return None if there is
nothing playing.

get_volume
Channel.get_volume() -> val

Returns the current volume for this sound object. The value is between 0.0 and 1.0.

pause
Channel.pause() -> None

Stops the sound that is playing on this channel, but it can be resumed with a call to unpause()

play
Channel.play(Sound, [loops, [maxtime]]) -> None

Starts playing a given sound on this channel. If the channels is currently playing a different
sound, it will be replaced/restarted with the given sound. Loops controls how many extra times
the sound will play, a negative loop will play indefinitely, it defaults to 0. Maxtime is the
number of totalmilliseconds that the sound will play. It defaults to forever (-1).

queue
Channel.queue(Sound) -> None

When you queue a sound on a channel, it will begin playing immediately when the current
playing sound finishes. Each channel can only have a single Sound object queued. The queued
sound will only play when the current Sound finishes naturally, not from another call to stop()
or play().

If there is no currently playing sound on this Channel it will begin playback immediately.

This will only work with SDL_mixer greater than version 1.2.3

set_endevent
Channel.set_endevent([event_type]) -> None

When you set an endevent for a channel, that event type will be put on the pygame event queue
everytime a sound stops playing on that channel. This is slightly different than the music object
end event, because this will trigger an event anytime the music stops. If you call stop() or play()
on the channel, it will fire an event. An event will also be fired when playback switches to a
queued Sound.

Pass no argument to stop this channel from firing events

Pygame 1.5.5 Reference Manual

� 56

set_volume
Channel.set_volume(val, [stereoval]) -> None

Sets the volume for the channel. The channel's volume level is mixed with the volume for the
active sound object. The value is between 0.0 and 1.0.

If mixer is using stereo, you can set the panning for audio by supplying a volume for the left and
right channels. If SDL_mixer cannot set the panning, it will average the two volumes. Panning
requires SDL_mixer-1.2.1.

stop
Channel.stop() -> None

Stops the sound that is playing on this channel.

unpause
Channel.unpause() -> None

Restarts a paused channel where it was paused.

Pygame 1.5.5 Reference Manual

� 57

Clock
Clocks are used to track and control the framerate of a game. You create the objects with the
time.Clock() function. The clock can be used to limit the framerate of a game, as well as track the
time used per frame. Use the pygame.time.Clock() function to create new Clock objects.

get_fps - get the current rate of frames per second

get_rawtime - get number of nondelayed milliseconds between last two calls to tick()

get_time - get number of milliseconds between last two calls to tick()

tick - control timer events

get_fps
Clock.get_fps() -> float

This computes the running average of frames per second. This is the number of times the tick()
method has been called per second.

get_rawtime
Clock.get_rawtime() -> int

This is similar to get_time(). It does not include the number of milliseconds that were delayed to
keep the clock tick under a given framerate.

get_time
Clock.get_time() -> int

This is the same value returned from the call to Clock.tick(). it is the number of milliseconds
that passed between the last two calls to tick().

tick
Clock.tick([ticks_per_sec_delay]) -> milliseconds

Updates the number of ticks for this clock. It should usually be called once per frame. If you
pass the optional delay argument the function will delay to keep the game running slower than
the given ticks per second. The function also returns the number of milliseconds passed since
the previous call to tick().

Pygame 1.5.5 Reference Manual

� 58

Font
The font object is created only from pygame.font.Font(). Once a font is created it's size and TTF file
cannot be changed. The Font objects are mainly used to render() text into a new Surface. The Font
objects also have a few states that can be set with set_underline(bool), set_bold(bool),
set_italic(bool). Each of these functions contains an equivalent get_XXX() routine to find the
current state. There are also many routines to query the dimensions of the text. The rendering
functions work with both normal python strings, as well as with unicode strings.

get_ascent - gets the font ascent

get_bold - status of the bold attribute

get_descent - gets the font descent

get_height - average height of font glyph

get_italic - status of the italic attribute

get_linesize - gets the font recommended linesize

get_underline - status of the underline attribute

render - render text to a new image

set_bold - assign the bold attribute

set_italic - assign the italic attribute

set_underline - assign the underline attribute

size - size of rendered text

get_ascent
Font.get_ascent() -> int

Returns the ascent for the font. The ascent is the number of pixels from the font baseline to the
top of the font.

get_bold
Font.get_bold() -> bool

Get the current status of the font's bold attribute

get_descent
Font.get_descent() -> int

Returns the descent for the font. The descent is the number of pixels from the font baseline to
the bottom of the font.

Pygame 1.5.5 Reference Manual

� 59

get_height
Font.get_height() -> int

Returns the average size of each glyph in the font.

get_italic
Font.get_italic() -> bool

Get the current status of the font's italic attribute

get_linesize
Font.get_linesize() -> int

Returns the linesize for the font. Each font comes with it's own recommendation for the spacing
number of pixels between each line of the font.

get_underline
Font.get_underline() -> bool

Get the current status of the font's underline attribute

render
Font.render(text, antialias, fore_RGBA, [back_RGBA]) -> Surface

Render the given text onto a new image surface. The given text can be standard python text or
unicode. Antialiasing will smooth the edges of the font for a much cleaner look. The foreground
and background color are both RGBA, the alpha component is ignored if given. If the
background color is omitted, the text will have a transparent background.

Note that font rendering is not thread safe, therefore only one thread can render text at any given
time.

Also, rendering smooth text with underlines will crash with SDL_ttf less that version 2.0, be
careful.

et_bold
Font.set_bold(bool) -> None

Enables or disables the bold attribute for the font. Making the font bold does not work as well as
you expect.

set_italic
Font.set_italic(bool) -> None

Enables or disables the italic attribute for the font.

set_underline
Font.set_underline(bool) -> None

Enables or disables the underline attribute for the font.

Pygame 1.5.5 Reference Manual

� 60

size
Font.size(text) -> width, height

Computes the rendered size of the given text. The text can be standard python text or unicode.
Changing the bold and italic attributes can change the size of the rendered text.

Pygame 1.5.5 Reference Manual

� 61

Joystick
The Joystick object represents a joystick device and allows you to access the controls on that
joystick. All functions (except get_name() and get_id()) require the Joystick object to be initialized.
This is done with the Joystick.init() function.

Joystick control values are only updated during the calls to the event queue. Call
pygame.event.pump() if you are not using the event queue for any input handling. Once a joystick
object has been initialized, it will start to send joystick events to the input queue.

Be sure to understand there is a difference between the joystick module and the Joystick objects.

get_axis - get the position of a joystick axis

get_ball - get the movement of a joystick trackball

get_button - get the position of a joystick button

get_hat - get the position of a joystick hat

get_id - get device id number for joystick

get_init - check if joystick is initialized

get_name - query name of joystick drive

get_numaxes - get number of axes on a joystick

get_numballs - get number of trackballs on a joystick

get_numbuttons - get number of buttons on a joystick

get_numhats - get number of hats on a joystick

init - initialize a joystick device for use

quit - uninitialize a joystick device for use

get_axis
Joystick.get_axis(axis) -> float

Returns the current position of a joystick axis. The value will range from -1 to 1 with a value of
0 being centered. You may want to take into account some tolerance to handle jitter, and
joystick drift may keep the joystick from centering at 0 or using the full range of position
values.

get_ball
Joystick.get_ball(button) -> x, y

Returns the relative movement of a joystick button. The value is a x, y pair holding the relative
movement since the last call to get_ball()

Pygame 1.5.5 Reference Manual

� 62

get_button
Joystick.get_button(button) -> bool

Returns the current state of a joystick button.

get_hat
Joystick.get_hat(button) -> x, y

Returns the current position of a position hat. The position is given as two values representing
the X and Y position for the hat. (0, 0) means centered. A value of -1 means left/down a value
of one means right/up

get_id
Joystick.get_id() -> idnum

Returns the device id number for this Joystick. This is the same number used in the call to
pygame.joystick.Joystick() to create the object. The Joystick does not need to be initialized for
this function to work.

get_init
Joystick.get_init() -> bool

Returns a true value if the Joystick is initialized.

get_name
Joystick.get_name(id) -> string

Returns the name of the Joystick device, given by the system. This function can be called before
the Joystick is initialized.

get_numaxes
Joystick.get_numaxes() -> int

Returns the number of available axes on the Joystick.

get_numballs
Joystick.get_numballs() -> int

Returns the number of available trackballs on the Joystick.

get_numbuttons
Joystick.get_numbuttons() -> int

Returns the number of available buttons on the Joystick.

get_numhats
Joystick.get_numhats() -> int

Returns the number of available directional hats on the Joystick.

Pygame 1.5.5 Reference Manual

� 63

init
Joystick.init() -> None

In order to call most members in the Joystick object, the Joystick must be initialized. You can
initialzie the Joystick object at anytime, and it is ok to initialize more than once.

quit
Joystick.quit() -> None

After you are completely finished with a joystick device, you can use this quit() function to free
access to the drive. This will be cleaned up automatically when the joystick module is.
uninitialized. It is safe to call this function on an uninitialized Joystick.

Pygame 1.5.5 Reference Manual

� 64

Movie
The Movie object represents an opened MPEG file. You control playback similar to a Sound object.

Movie objects have a target display Surface. The movie is rendered to this Surface in a background
thread. If the Surface is the display surface, and the system supports it, the movie will render into a
Hardware YUV overlay plane. If you don't set a display Surface, it will default to the display
Surface.

Movies are played back in background threads, so there is very little management needed on the
user end. Just load the Movie, set the destination, and Movie.play()

Movies will only playback audio if the pygame.mixer module is not initialized. It is easy to
temporarily call pygame.mixer.quit() to disable audio, then create and play your movie. Finally
calling pygame.mixer.init() again when finished with the Movie.

NOTE: When disabling the mixer so a movie may play audio, you must disable the audio before
calling pygame.movie.Movie or the movie will not realise that it may access the audio. Before
reinitialising the mixer, You must remove all references to the movie before calling
pygame.mixer.init() or the init will fail, leading to errors when you attempt to use the mixer.

eg. pygame.mixer.quit() movie=pygame.movie.Movie(\"my.mpg\") movie.play() # process events
until movie finished here movie.stop() movie=None # if you don't do this bit the init will fail
pygame.mixer.init()

get_busy - query the playback state

get_frame - query the current frame in the movie

get_length - query playback time of the movie

get_size - query the size of the video image

get_time - query the current time in the movie

has_audio - query if movie stream has audio

has_video - query if movie stream has video

pause - pause/resume movie playback

play - start movie playback

render_frame - Render a specfic numbered frame.

rewind - set playback position to the beginning of the movie

set_display - change the video output surface

set_volume - change volume for sound

skip - skip the movie playback position forward

stop - stop movie playback

Pygame 1.5.5 Reference Manual

� 65

get_busy
Movie.get_busy() -> bool

Returns true if the movie is currently playing.

get_frame
Movie.get_frame() -> int

Gets the current video frame number for the movie.

get_length
Movie.get_length() -> float

Returns the total time (in seconds) of the movie.

get_size
Movie.get_size() -> width,height

Returns the size of the video image the mpeg provides.

get_time
Movie.get_time() -> float

Gets the current time (in seconds) for the movie. (currently not working? SMPEG always
reports 0)

has_audio
Movie.has_audio() -> bool

Returns a true value when the Movie object has a valid audio stream.

has_video
Movie.has_video() -> bool

Returns a true value when the Movie object has a valid video stream.

pause
Movie.pause() -> None

This will temporarily stop playback of the movie. When called a second time, playback will
resume where it left off.

play
Movie.play(loops=0) -> None

Starts playback of a movie. If audio or video is enabled for the Movie, those outputs will be
created.

You can specify an optional argument which will be the number of times the movie loops while
playing.

Pygame 1.5.5 Reference Manual

� 66

render_frame
Movie.render_frame(framenum) -> int

Returns the current frame number.

rewind
Movie.rewind() -> None

Sets the movie playback position to the start of the movie.

set_display
Movie.set_display(Surface, [pos]) -> None

Set the output surface for the Movie's video. You may also specify a position for the topleft
corner of the video. The position defaults to (0,0) if not given.

The position argument can optionally be a rectangle, in which case the video will be stretched to
fill the rectangular area.

You may also pass None as the destination Surface, and no video will be rendered for the movie
playback.

set_volume
Movie.set_volume(val) -> None

Set the play volume for this Movie. The volume value is between 0.0 and 1.0.

skip
Movie.skip(seconds) -> None

Sets the movie playback position ahead by the given amount of seconds. the seconds value is a
floating point value

stop
Movie.stop() -> None

Stops playback of a movie. If sound and video are being rendered, both will be stopped at their
current position.

Pygame 1.5.5 Reference Manual

� 67

Rect
The rectangle object is a useful object representing a rectangle area. Rectangles are created from the
pygame.Rect() function. This routine is also in the locals module, so importing the locals into your
namespace allows you to just use Rect().

Rect contains helpful methods, as well as a list of modifiable members: top, bottom, left, right,
topleft, topright, bottomleft, bottomright, size, width, height, center, centerx, centery, midleft,
midright, midtop, midbottom. When changing thesemembers, the rectangle will be moved to the
given assignment. (except when changing the size, width, or height member, which will resize the
rectangle from the topleft corner)

The rectstyle arguments used frequently with the Rect object (and elsewhere in pygame) is one of
the following things. First, an actual Rect object. Second, a sequence of [xpos, ypos, width, height].
Lastly, a pair of sequences, representing the position and size [[xpos, ypos], [width, height]]. Also,
if a method takes a rectstyle argument as its only argument, you can simply pass four arguments
representing xpos, ypos, width, height. A rectstyle argument can also be _any_ python object with
an attribute named 'rect'.

clamp - move rectangle inside another

clamp_ip - moves the rectangle inside another

clip - rectangle cropped inside another

collidedict - find overlapping rectangle in a dictionary

collidedictall - find all overlapping rectangles

collidelist - find overlapping rectangle

collidelistall - find all overlapping rectangles

collidepoint - point inside rectangle

colliderect - check overlapping rectangles

contains - check if rectangle fully inside another

inflate - new rectangle with size changed

inflate_ip - changes the Rect size

move - new rectangle with position changed

move_ip - move the Rect by the given offset

normalize - corrects negative sizes

union - makes new rectangle covering both inputs

union_ip - rectangle covering both input

unionall - rectangle covering all inputs

unionall_ip - rectangle covering all inputs

Pygame 1.5.5 Reference Manual

� 68

clamp
Rect.clamp(rectstyle) -> Rect

Returns a new rectangle that is moved to be completely inside the argument rectangle. If the
base rectangle is too large for the argument rectangle in an axis, it will be centered on that axis.

clamp_ip
Rect.clamp_ip(rectstyle) -> None

Moves the Rect to be completely inside the argument rectangle. If the given rectangle is too
large for the argument rectangle in an axis, it will be centered on that axis.

clip
Rect.clip(rectstyle) -> Rect

Returns a new rectangle that is the given rectangle cropped to the inside of the base rectangle. If
the two rectangles do not overlap to begin with, you will get a rectangle with 0 size.

collidedict
Rect.collidedict(dict if rectstyle keys) -> key/value pair

Returns the key/value pair of the first rectangle key in the dict that overlaps the base rectangle.
Once an overlap is found, this will stop checking the remaining list. If no overlap is found, it
will return None.

Remember python dictionary keys must be immutable, Rects are not immutable, so they cannot
directly be, dictionary keys. You can convert the Rect to a tuple with the tuple() builtin
command.

collidedictall
Rect.collidedictall(rectstyle list) -> key/val list

Returns a list of the indexes that contain rectangles overlapping the base rectangle. If no overlap
is found, it will return an empty sequence.

Remember python dictionary keys must be immutable, Rects are not immutable, so they cannot
directly be, dictionary keys. You can convert the Rect to a tuple with the tuple() builtin
command.

collidelist
Rect.collidelist(rectstyle list) -> int index

Returns the index of the first rectangle in the list to overlap the base rectangle. Once an overlap
is found, this will stop checking the remaining list. If no overlap is found, it will return -1.

collidelistall
Rect.collidelistall(rectstyle list) -> index list

Returns a list of the indexes that contain rectangles overlapping the base rectangle. If no overlap
is found, it will return an empty sequence.

Pygame 1.5.5 Reference Manual

� 69

collidepoint
Rect.collidepoint(x, y) -> bool

Returns true if the given point position is inside the rectangle. If a point is on the border, it is
counted as inside.

colliderect
Rect.colliderect(rectstyle) -> bool

Returns true if any area of the two rectangles overlaps.

contains
Rect.contains(rectstyle) -> bool

Returns true when the given rectangle is entirely inside the base rectangle.

inflate
Rect.inflate(x, y) -> Rect

Returns a new rectangle which has the sizes changed by the given amounts. The rectangle
shrinks and expands around the rectangle's center. Negative values will shrink the rectangle.

inflate_ip
Rect.inflate_ip(x, y) -> None

Changes the Rect by the given amounts. The rectangle shrinks and expands around the
rectangle's center. Negative values will shrink the rectangle.

move
Rect.move(x, y) -> Rect

Returns a new rectangle which is the base rectangle moved by the given amount.

move_ip
Rect.move_ip(x, y) -> None

Moves the rectangle which by the given amount.

normalize
Rect.normalize() -> None

If the rectangle has a a negative size in width or height, this will flip that axis so the sizes are
positive, and the rectangle remains in the same place.

union
Rect.union(rectstyle) -> Rect

Returns a new Rect to completely cover the given input. There may be area inside the new Rect
that is not covered by either input.

Pygame 1.5.5 Reference Manual

� 70

union_ip
Rect.union_ip(rectstyle) -> None

Resizes the Rect to completely cover the given input. There may be area inside the new
dimensions that is not covered by either input.

unionall
Rect.unionall(sequence_of_rectstyles) -> Rect

Returns a new rectangle that completely covers all the given inputs. There may be area inside
the new rectangle that is not covered by the inputs.

unionall_ip
Rect.unionall_ip(sequence_of_rectstyles) -> None

Resizes the rectangle to completely cover all the given inputs. There may be area inside the new
rectangle that is not covered by the inputs.

Pygame 1.5.5 Reference Manual

� 71

Sound
Sound objects represent actual sound data. Sound objects are created from the function
pygame.mixer.Sound(). Sound objects can be playing on multiple channels simultaneously. Calling
functions like Sound.stop() from the sound objects will effect all channels playing that Sound
object.

All sound objects have the same frequency and format as the pygame.mixer module's initialization.

fadeout - fadeout all channels playing this sound

get_num_channels - number of channels with sound

get_volume - query volume for sound

play - play sound

set_volume - change volume for sound

stop - stop all channels playing this sound

fadeout
Sound.fadeout(millisec) -> None

Fade out all the playing channels playing this sound over the. All channels playing this sound
will be stopped after the given milliseconds.

get_num_channels
Sound.get_num_channels() -> int

Returns the number of channels that have been using this sound. The channels may have already
finished, but have not started playing any other sounds.

get_volume
Sound.get_volume() -> val

Returns the current volume for this sound object. The value is 0.0 to 1.0.

play
Sound.play([loops, [maxtime]]) -> Channel

Starts playing a song on an available channel. If no channels are available, it will not play and
return None. Loops controls how many extra times the sound will play, a negative loop will play
indefinitely, it defaults to 0. Maxtime is the number of total milliseconds that the sound will
play. It defaults to forever (-1).

Returns a channel object for the channel that is selected to play the sound.

set_volume
Sound.set_volume(val) -> None

Pygame 1.5.5 Reference Manual

� 72

Set the play volume for this sound. This will effect any channels currently playing this sound,
along with all subsequent calls to play. The value is 0.0 to 1.0.

stop
Sound.stop() -> None

This will instantly stop all channels playing this sound.

Pygame 1.5.5 Reference Manual

� 73

Sound
Sound objects represent actual sound data. Sound objects are created from the function
pygame.mixer.Sound(). Sound objects can be playing on multiple channels simultaneously. Calling
functions like Sound.stop() from the sound objects will effect all channels playing that Sound
object.

All sound objects have the same frequency and format as the pygame.mixer module's initialization.

fadeout - fadeout all channels playing this sound

get_num_channels - number of channels with sound

get_volume - query volume for sound

play - play sound

set_volume - change volume for sound

stop - stop all channels playing this sound

fadeout
Sound.fadeout(millisec) -> None

Fade out all the playing channels playing this sound over the. All channels playing this sound
will be stopped after the given milliseconds.

get_num_channels
Sound.get_num_channels() -> int

Returns the number of channels that have been using this sound. The channels may have already
finished, but have not started playing any other sounds.

get_volume
Sound.get_volume() -> val

Returns the current volume for this sound object. The value is 0.0 to 1.0.

play
Sound.play([loops, [maxtime]]) -> Channel

Starts playing a song on an available channel. If no channels are available, it will not play and
return None. Loops controls how many extra times the sound will play, a negative loop will play
indefinitely, it defaults to 0. Maxtime is the number of total milliseconds that the sound will
play. It defaults to forever (-1).

Returns a channel object for the channel that is selected to play the sound.

Pygame 1.5.5 Reference Manual

� 74

set_volume
Sound.set_volume(val) -> None

Set the play volume for this sound. This will effect any channels currently playing this sound,
along with all subsequent calls to play. The value is 0.0 to 1.0.

stop
Sound.stop() -> None

This will instantly stop all channels playing this sound.

Pygame 1.5.5 Reference Manual

� 75

Surface
Surface objects represent a simple memory buffer of pixels. Surface objects can reside in system memory, or
in special hardware memory, which can be hardware accelerated. Surfaces that are 8 bits per pixel use a
colormap to represent their color values. All Surfaces with higher bits per pixel use a packed pixels to store
their color values.

Surfaces can have many extra attributes like alpha planes, colorkeys, source rectangle clipping. These
functions mainly effect how the Surface is blitted to other Surfaces. The blit routines will attempt to use
hardware acceleration when possible, otherwise will use highly optimized software blitting methods.

There is support for pixel access for the Surfaces. Pixel access on hardware surfaces is slow and not
recommended. Pixels can be accessed using the get_at() and set_at() functions. These methods are fine for
simple access, but will be considerably slow when doing of pixel work with them. If you plan on doing a lot
of pixel level work, it is recommended to use the pygame.surfarray module, which can treat the surfaces like
large multidimensional arrays (and it's quite quick).

Any functions that directly access a surface's pixel data will need that surface to be lock()'ed. These
functions can lock() and unlock() the surfaces themselves without assistance. But, if a function will be called
many times, there will be a lot of overhead for multiple locking and unlocking of the surface. It is best to
lock the surface manually before making the function call many times, and then unlocking when you are
finished. All functions that need a locked surface will say so in their docs.

Also remember that you will want to leave the surface locked for the shortest amount of time needed.

Here is the quick breakdown of how packed pixels work (don't worry if you don't quite understand this, it is
only here for informational purposes, it is not needed). Each colorplane mask can be used to isolate the
values for a colorplane from the packed pixel color. Therefore PACKED_COLOR & RED_MASK ==
REDPLANE. Note that the REDPLANE is not exactly the red color value, but it is the red color value
bitwise left shifted a certain amount. The losses and masks can be used to convert back and forth between
each colorplane and the actual color for that plane. Here are the final formulas used be map and unmap.
PACKED_COLOR = RED>>losses[0]<<shifts[0] | GREEN>>losses[1]<<shifts[1] |
BLUE>>losses[2]<<shifts[2] RED = PACKED_COLOR & masks[0] >> shifts[0] << losses[0] GREEN =
PACKED_COLOR & masks[1] >> shifts[1] << losses[1] BLUE = PACKED_COLOR & masks[2] >>
shifts[2] << losses[2] There is also an alpha channel for some Surfaces.

blit - copy a one Surface to another.

convert - new copy of surface with different format

convert_alpha - new copy of surface with different format and per pixel alpha

fill - fill areas of a Surface

get_abs_offset - get absolute offset of subsurface

get_abs_parent - get the toplevel surface for a subsurface

get_alpha - query alpha information

get_at - get a pixel color

get_bitsize - query size of pixel

get_bytesize - query size of pixel

get_clip - query the clipping area

get_colorkey - query colorkey

Pygame 1.5.5 Reference Manual

� 76

get_flags - query the surface flags

get_height - query the surface height

get_locked - check if the surface needs locking

get_losses - get mapping losses for each colorplane

get_masks - get mapping bitmasks for each colorplane

get_offset - get offset of subsurface

get_palette - get the palette

get_palette_at - get a palette entry

get_parent - get a subsurface parent

get_pitch - query the surface pitch

get_rect - get a rectangle covering the entire surface

get_shifts - alphashift

get_size - query the surface size

get_width - query the surface width

lock - locks Surface for pixel access

map_rgb - convert RGB into a mapped color

mustlock - check if the surface needs locking

set_alpha - change alpha information

set_at - set pixel at given position

set_clip - assign destination clipping rectangle

set_colorkey - change colorkey information

set_palette - set the palette

set_palette_at - set a palette entry

subsurface - create a new surface that shares pixel data

unlock - locks Surface for pixel access

unmap_rgb - convert mapped color into RGB

Pygame 1.5.5 Reference Manual

� 77

blit
Surface.blit(source, destpos, [sourcerect]) -> Rect

The blitting will copy pixels from the source. It will respect any special modes like colorkeying and
alpha. If hardware support is available, it will be used. The given source is the Surface to copy from. The
destoffset is a 2-number-sequence that specifies where on the destination Surface the blit happens (see
below). When sourcerect isn't supplied, the blit will copy the entire source surface. If you would like to
copy only a portion of the source, use the sourcerect argument to control what area is copied.

The blit is subject to be clipped by the active clipping rectangle. The return value contains the actual area
blitted.

As a shortcut, the destination position can be passed as a rectangle. If a rectangle is given, the blit will
use the topleft corner of the rectangle as the blit destination position. The rectangle sizes will be ignored.

Blitting surfaces with pixel alphas onto an 8bit destination will not use the surface alpha values.

convert
Surface.convert([src_surface] OR depth, [flags] OR masks) -> Surface

Creates a new copy of the surface with the desired pixel format. Surfaces with the same pixel format will
blit much faster than those with mixed formats. The pixel format of the new surface will match the
format given as the argument. If no surface is given, the new surface will have the same pixel format as
the current display.

convert() will also accept bitsize or mask arguments like the Surface() constructor function. Either pass
an integer bitsize or a sequence of color masks to specify the format of surface you would like to convert
to. When used this way you may also pass an optional flags argument (whew).

convert_alpha
Surface.convert_alpha([src_surface]) -> Surface

Creates a new copy of the surface with the desired pixel format. The new surface will be in a format
suited for quick blitting to the given format with per pixel alpha. If no surface is given, the new surface
will be optimized for blittint to the current display.

Unlike the convert() method, the pixel format for the new image will not be exactly the same as the
requested source, but it will be optimized for fast alpha blitting to the destination.

fill
Surface.fill(color, [rectstyle])) -> Rect

Fills the specified area of the Surface with the mapped color value. If no destination rectangle is
supplied, it will fill the entire Surface.

The color argument can be a RGBA sequence or a mapped color integer.

The fill is subject to be clipped by the active clipping rectangle. The return value contains the actual area
filled.

get_abs_offset
Surface.get_abs_offset() -> x, y

Returns the absolute X and Y position a subsurface is positioned inside its top level parent. Will return
0,0 for surfaces that are not a subsurface.

Pygame 1.5.5 Reference Manual

� 78

get_abs_parent
Surface.get_abs_parent() -> Surface

Returns the top level Surface for this subsurface. If this is not a subsurface it will return a reference to
itself. You will always get a valid surface from this method.

get_alpha
Surface.get_alpha() -> alpha

Returns the current alpha value for the Surface. If transparency is disabled for the Surface, it returns
None.

get_at
Surface.get_at(position) -> RGBA

Returns the RGB color values at a given pixel. If the Surface has no per-pixel alpha, the alpha will be
255 (opaque).

This function will need to temporarily lock the surface.

get_bitsize
Surface.get_bitsize() -> int

Returns the number of bits used to represent each pixel. This value may not exactly fill the number of
bytes used per pixel. For example a 15 bit Surface still requires a full 2 bytes.

get_bytesize
Surface.get_bytesize() -> int

Returns the number of bytes used to store each pixel.

get_clip
Surface.get_clip() -> rect

Returns the current destination clipping area being used by the Surface. If the clipping area is not set, it
will return a rectangle containing the full Surface area.

get_colorkey
Surface.get_colorkey() -> RGBA

Returns the current mapped color value being used for colorkeying. If colorkeying is not enabled for this
surface, it returns None

get_flags
Surface.get_flags() -> flags

Returns the current state flags for the surface.

get_height
Surface.get_height() -> height

Returns the height of the Surface.

Pygame 1.5.5 Reference Manual

� 79

get_locked
Surface.get_locked() -> bool

Returns true if the surface is currently locked.

get_losses
Surface.get_losses() -> redloss, greenloss, blueloss, alphaloss

Returns the bitloss for each color plane. The loss is the number of bits removed for each colorplane from
a full 8 bits of resolution. A value of 8 usually indicates that colorplane is not used (like the alpha)

get_masks
Surface.get_masks() -> redmask, greenmask, bluemask, alphamask

Returns the bitmasks for each color plane. The bitmask is used to isolate each colorplane value from a
mapped color value. A value of zero means that colorplane is not used (like alpha)

get_offset
Surface.get_offset() -> x, y

Returns the X and Y position a subsurface is positioned inside its parent. Will return 0,0 for surfaces that
are not a subsurface.

get_palette
Surface.get_palette() -> [[r, g, b], ...]

This will return the an array of all the color indexes in the Surface's palette.

get_palette_at
Surface.get_palette_at(index) -> r, g, b

This will retreive an individual color entry from the Surface's palette.

get_parent
Surface.get_parent() -> Surface

Returns the Surface that is a parent of this subsurface. Will return None if this is not a subsurface.

get_pitch
Surface.get_pitch() -> pitch

The surface pitch is the number of bytes used in each scanline. This function should rarely needed,
mainly for any special-case debugging.

get_rect
Surface.get_rect() -> rect

Returns a new rectangle covering the entire surface. This rectangle will always start at 0, 0 with a width.
and height the same size as the image.

get_shifts
Surface.get_shifts() -> redshift, greenshift, blueshift,

Returns the bitshifts used for each color plane. The shift is determine how many bits left-shifted a
colorplane value is in a mapped color value.

Pygame 1.5.5 Reference Manual

� 80

get_size
Surface.get_size() -> x, y

Returns the width and height of the Surface.

get_width
Surface.get_width() -> width

Returns the width of the Surface.

lock
Surface.lock() -> None

On accelerated surfaces, it is usually required to lock the surface before you can access the pixel values.
To be safe, it is always a good idea to lock the surface before entering a block of code that changes or
accesses the pixel values. The surface must not be locked when performing other pygame functions on it
like fill and blit.

You can doublecheck to really make sure a lock is needed by calling the mustlock() member. This
should not be needed, since it is usually recommended to lock anyways and work with all surface types.
If the surface does not need to be locked, the operation will return quickly with minute overhead.

On some platforms a necessary lock can shut off some parts of the system. This is not a problem unless
you leave surfaces locked for long periouds of time. Only keep the surface locked when you need the
pixel access. At the same time, it is not a good too repeatedly lock and unlock the surface inside tight
loops. It is fine to leave the surface locked while needed, just don't be lazy.

map_rgb
Surface.map_rgb(RGBA) -> int

Uses the Surface format to convert RGBA into a mapped color value.

This function is not as needed as normal C code using SDL. The pygame functions do not used mapped
colors, so there is no need to map them.

mustlock
Surface.mustlock() -> bool

Returns true if the surface really does need locking to gain pixel access. Usually the overhead of
checking before locking outweight the overhead of just locking any surface before access.

set_alpha
Surface.set_alpha([alpha, [flags]]) -> None

Set the overall transparency for the surface. If no alpha is passed, alpha blending is disabled for the
surface. An alpha of 0 is fully transparent, an alpha of 255 is fully opaque. If no arguments or None is
passed, this will disable the surface alpha.

If your surface has a pixel alpha channel, it will override the overall surface transparency. You'll need to
change the actual pixel transparency to make changes.

If your image also has pixel alpha values, will be used repeatedly, you will probably want to pass the
RLEACCEL flag to the call. This will take a short time to compile your surface, and increase the blitting
speed.

Pygame 1.5.5 Reference Manual

� 81

set_at
Surface.set_at(position, RGBA) -> None

Assigns color to the image at the give position. Color can be a RGBA sequence or a mapped color
integer.

In some situations just using the fill() function with a one-pixel sized rectangle will be quicker. Also the
fill function does not require the surface to be locked.

This function will need to temporarily lock the surface.

set_clip
Surface.set_clip([rectstyle]) -> None

Assigns the destination clipping rectangle for the Surface. When blit or fill operations are performed on
the Surface, they are restricted to the inside of the clipping rectangle. If no rectangle is passed, the
clipping region is set to the entire Surface area. The rectangle you pass will be clipped to the area of the
Surface.

set_colorkey
Surface.set_colorkey([color, [flags]]) -> None

Set the colorkey for the surface by passing a mapped color value as the color argument. If no arguments
or None is passed, colorkeying will be disabled for this surface.

The color argument can be either a RGBA sequence or a mapped integer.

If your image is nonchanging and will be used repeatedly, you will probably want to pass the
RLEACCEL flag to the call. This will take a short time to compile your surface, and increase the blitting
speed.

set_palette
Surface.set_palette([[r, g, b], ...]) -> None

This will replace the entire palette with color information you provide.

You can pass an incomplete list of RGB values, and this will only change the first colors in the palette.

set_palette_at
Surface.set_palette_at(index, [r, g, b]) -> None

This function sets the palette color at a specific entry.

Pygame 1.5.5 Reference Manual

� 82

subsurface
Surface.subsurface(rectstyle) -> Surface

Creates a new surface that shares pixel data of the given surface. Note that only the pixel data is shared.
Things like clipping rectangles and colorkeys will be unique for the new surface.

The new subsurface will inherit the palette, colorkey, and surface alpha values from the base image.

You should not use the RLEACCEL flag for parent surfaces of subsurfaces, for the most part it will
work, but it will cause a lot of extra work, every time you change the subsurface, you must decode and
recode the RLEACCEL data for the parent surface.

As for using RLEACCEL with the subsurfaces, that will work as you'd expect, but changes the the parent
Surface will not always take effect in the subsurface.

unlock
Surface.unlock() -> None

After a surface has been locked, you will need to unlock it when you are done.

You can doublecheck to really make sure a lock is needed by calling the mustlock() member. This
should not be needed, since it is usually recommended to lock anyways and work with all surface types.
If the surface does not need to be locked, the operation will return quickly with minute overhead.

unmap_rgb
Surface.unmap_rgb(color) -> RGBA

This function returns the RGBA components for a mapped color value. If Surface has no per-pixel alpha,
alpha will be 255 (opaque).

This function is not as needed as normal C code using SDL. The pygame functions do not used mapped
colors, so there is no need to unmap them.

Pygame 1.5.5 Reference Manual

� 83

pygame.cursors
Set of cursor resources available for use. These cursors come in a sequence of values that are needed as the
arguments for pygame.mouse.set_cursor(). to dereference the sequence in place and create the cursor in one
step, call like this; pygame.mouse.set_cursor(*pygame.cursors.arrow).

Here is a list of available cursors; arrow, diamond, ball, broken_x, tri_left, tri_right

There is also a sample string cursor named 'thickarrow_strings'. The compile() function can convert these
string cursors into cursor byte data.

compile - compile cursor strings into cursor data

load_xbm - reads a pair of XBM files into set_cursor arguments

compile
pygame.cursors.compile(strings, black, white) -> data, mask

This takes a set of strings with equal length and computes the binary data for that cursor. The string
widths must be divisible by 8.

The black and white arguments are single letter strings that tells which characters will represent black
pixels, and which characters represent white pixels. All other characters are considered clear.

This returns a tuple containing the cursor data and cursor mask data. Both these arguments are used
when setting a cursor with pygame.mouse.set_cursor().

load_xbm
pygame.cursors.load_xbm(cursorfile, maskfile) -> cursor_args

Arguments can either be filenames or filelike objects with the readlines method. Not largely tested, but
should work with typical XBM files.

Pygame 1.5.5 Reference Manual

� 84

pygame.sprite

This module contains a base class for sprite objects. Also several different group classes you can use to store
and identify the sprites. Some of the groups can be used to draw the sprites they contain. Lastly there are a
handful of collision detection functions to help you quickly find intersecting sprites in a group.

The way the groups are designed, it is very efficient at adding and removing sprites from groups. This makes
the groups a perfect use for cataloging or tagging different sprites. instead of keeping an identifier or type as
a member of a sprite class, just store the sprite in a different set of groups. this ends up being a much better
way to loop through, find, and effect different sprites. It is also a very quick to test if a sprite is contained in
a given group.

You can manage the relationship between groups and sprites from both the groups and the actual sprite
classes. Both have add() and remove() functions that let you add sprites to groups and groups to sprites. Both
have initializing functions that can accept a list of containers or sprites.

The methods to add and remove sprites from groups are smart enough to not delete sprites that aren't already
part of a group, and not add sprites to a group if it already exists. You may also pass a sequence of sprites or
groups to these functions and each one will be used.

The design of the sprites and groups is very flexible. There's no need to inherit from the provided classes,
you can use any object you want for the sprites, as long as it contains "add_internal" and "remove_internal"
methods, which are called by the groups when they remove and add sprites. The same is true for containers.
A container can be any python object that has "add_internal" and "remove_internal" methods that the sprites
call when they want add and remove themselves from containers. The containers must also have a member
named "_spritegroup", which can be set to any dummy value.

Group - (class) - the Group class is a container for sprites

Group.add - add sprite to group

Group.copy - copy a group with all the same sprites

Group.empty - remove all sprites

Group.has - ask if group has sprite

Group.remove - remove sprite from group

Group.sprites - return an object to loop over each sprite

Group.update - call update for all member sprites

GroupSingle - (class) - a group container that holds a single most recent item

RenderClear - (class) - a group container that can draw and clear its sprites

RenderClear.clear - erase the previous position of all sprites

RenderClear.draw - draw all sprites onto a surface

RenderPlain - (class) - a sprite group that can draw all its sprites

RenderPlain.draw - draw all sprites onto a surface

RenderUpdates - (class) - a sprite group that can draw and clear with update rectangles

RenderUpdates.dra - draw all sprites onto the surface

Pygame 1.5.5 Reference Manual

� 85

w

Sprite - (class) - the base class for your visible game objects.

Sprite.add - add a sprite to container

Sprite.alive - ask the life of a sprite

Sprite.groups - list used sprite containers

Sprite.kill - end life of sprite, remove from all groups

Sprite.remove - remove a sprite from container

groupcollide - collision detection between group and group

spritecollide - collision detection between sprite and group

spritecollideany - finds any sprites that collide

Group
pygame.sprite.Group(sprite=())

the Group class is a container for sprites This is the base sprite group class. It does everything needed to
behave as a normal group. You can easily inherit a new group class from this if you want to add more
features.

You can initialize a group by passing it a sprite or sequence of sprites to be contained.

Group.add
pygame.sprite.Group.add(sprite)

Add a sprite or sequence of sprites to a group.

Group.copy
pygame.sprite.Group.copy() -> Group

Returns a copy of the group that is the same class type, and has the same contained sprites.

Group.empty
pygame.sprite.Group.empty()

Removes all the sprites from the group.

Group.has
pygame.sprite.Group.has(sprite) -> bool

Returns true if the given sprite or sprites are contained in the group

Group.remove
pygame.sprite.Group.remove(sprite)

Remove a sprite or sequence of sprites from a group.

Pygame 1.5.5 Reference Manual

� 86

Group.sprites
pygame.sprite.Group.sprites() -> iterator

Returns an object that can be looped over with a 'for' loop. (For now it is always a list, but newer version
of python could return different objects, like iterators.)

Group.update
pygame.sprite.Group.update(...)

calls the update method for all sprites in the group. passes all arguments are to the Sprite update function.

GroupSingle
pygame.sprite.GroupSingle()

a group container that holds a single most recent item This class works just like a regular group, but it
only keeps a single sprite in the group. Whatever sprite has been added to the group last, will be the only
sprite in the group.

RenderClear
pygame.sprite.RenderClear()

a group container that can draw and clear its sprites The RenderClear group is just like a normal group,
but it can draw and clear the sprites. Any sprites used in this group must contain member elements
named "image" and "rect". These are a pygame Surface and Rect, which are passed to a blit call.

RenderClear.clear
pygame.sprite.RenderClear.clear(surface, bgd)

Clears the area of all drawn sprites. the bgd argument should be Surface which is the same dimensions as
the surface. The bgd can also be a function which gets called with the passed surface and the area to be
cleared.

RenderClear.draw
pygame.sprite.RenderClear.draw(surface)

Draws all the sprites onto the given surface.

RenderPlain
pygame.sprite.RenderPlain(sprite=())

a sprite group that can draw all its sprites The RenderPlain group is just like a normal group, it just adds
a "draw" method. Any sprites used with this group to draw must contain two member elements named
"image" and "rect". These are a pygame Surface and Rect object that are passed to blit.

You can initialize a group by passing it a sprite or sequence of sprites to be contained.

RenderPlain.draw
pygame.sprite.RenderPlain.draw(surface)

Draws all the sprites onto the given surface.

Pygame 1.5.5 Reference Manual

� 87

RenderUpdates
pygame.sprite.RenderUpdates()

a sprite group that can draw and clear with update rectangles The RenderUpdates is derived from the
RenderClear group and keeps track of all the areas drawn and cleared. It also smartly handles
overlapping areas between where a sprite was drawn and cleared when generating the update rectangles.

RenderUpdates.draw
pygame.sprite.RenderUpdates.draw(surface)

Draws all the sprites onto the given surface. It returns a list of rectangles, which should be passed to
pygame.display.update()

Sprite
pygame.sprite.Sprite(group=())

the base class for your visible game objects. The sprite class is meant to be used as a base class for the
objects in your game. It just provides functions to maintain itself in different groups. A sprite is
considered 'alive' as long as it is a member of one or more groups. The kill() method simply removes this
sprite from all groups.

You can initialize a sprite by passing it a group or sequence of groups to be contained in.

Sprite.add
pygame.sprite.Sprite.add(group)

Add the sprite to a group or sequence of groups.

Sprite.alive
pygame.sprite.Sprite.alive() -> bool

Returns true if this sprite is a member of any groups.

Sprite.groups
pygame.sprite.Sprite.groups() -> list

Returns a list of all the groups that contain this sprite.

Sprite.kill
pygame.sprite.Sprite.kill()

Removes the sprite from all the groups that contain it. The sprite is still fine after calling this kill() so you
could use it to remove a sprite from all groups, and then add it to some other groups.

Sprite.remove
pygame.sprite.Sprite.remove(group)

Remove the sprite from a group or sequence of groups.

groupcollide
pygame.sprite.groupcollide(groupa, groupb, dokilla, dokillb) -> dict

given two groups, this will find the intersections between all sprites in each group. it returns a dictionary
of all sprites in the first group that collide. the value for each item in the dictionary is a list of the sprites
in the second group it collides with. the two dokill arguments control if the sprites from either group will
be automatically removed from all groups.

Pygame 1.5.5 Reference Manual

� 88

spritecollide
pygame.sprite.spritecollide(sprite, group, dokill) -> list

given a sprite and a group of sprites, this will return a list of all the sprites that intersect the given sprite.
all sprites must have a "rect" value, which is a rectangle of the sprite area. if the dokill argument is true,
the sprites that do collide will be automatically removed from all groups.

spritecollideany
pygame.sprite.spritecollideany(sprite, group) -> sprite

given a sprite and a group of sprites, this will return return any single sprite that collides with with the
given sprite. If there are no collisions this returns None. if you don't need all the features of the
spritecollide function, this function will be a bit quicker. all sprites must have a "rect" value, which is a
rectangle of the sprite area.

�

